Skip to main content

Quercetin-Loaded Nanomedicine as Oncotherapy

  • Chapter
  • First Online:
Nanomedicine for Bioactives

Abstract

Phytochemicals as nutritional components have been explored for their anticancer properties. Quercetin (QT), being a chief component of different dietary products, has been widely explored for its anticancer and anti-proliferative activities on numerous cancer cell lines. Also, it is an exceptional antioxidant which plays crucial role against various human cancers. QT shows significant pro-apoptotic activity against tumor cells and thus can impede the development of various cancers in humans. Moreover, the anticancer activities of QT have been recognized in various in vitro and in vivo studies on numerous cancer cell lines and animal models. Furthermore, the toxicity of QT against cancer cells is complemented with slight or no adverse effects to normal cells. Again QT molecules have been reported with major issues including low oral bioavailability and poor aqueous solubility which makes it to be an unideal moiety for therapeutic applications. Also, the frequent gastrointestinal digestion of QT seems to be a key barrier for its clinical translations. Henceforth, to overcome these drawbacks, QT-based nanoformulations (NFs) are developed which have shown favourable results in its upregulation by the epithelial system which also improved its targeted delivery at site. Herein, in this review, we have tried to focus on various promising roles of QT-based nanoformulations alone or modified with targeted nanocarriers as an ideal agent for oncotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO Reports 2018. https://www.who.int/news-room/fact-sheets/detail/cancer

  2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  3. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S (2016) Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health 4(9):e609–e616

    Article  PubMed  Google Scholar 

  4. Nam JS, Sharma AR, Nguyen LT, Chakraborty C, Sharma G, Lee SS (2016) Application of bioactive quercetin in oncotherapy: from nutrition to nanomedicine. Molecules 21(1):E108

    Article  PubMed  Google Scholar 

  5. Rauf A, Imran M, Khan IA, Ur-Rehman M, Gilani SA, Mehmood Z, Mubarak MS (2018) Anticancer potential of quercetin: a comprehensive review. Phytother Res 32(11):2109–2130

    Article  CAS  PubMed  Google Scholar 

  6. Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E, Cossarizza A (2011) Quercetin and cancer chemoprevention. Evid Based Complement Alternat Med 2011:591356

    Article  PubMed  PubMed Central  Google Scholar 

  7. Caddeo C, Diez-Sales O, Pons R, Carbone C, Ennas G, Puglisi G, Manconi M (2016) Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. J Colloid Interface Sci 461:69–78

    Article  CAS  PubMed  Google Scholar 

  8. Caddeo C, Nacher A, Vassallo A, Armentano MF, Pons R, Fernandez-Busquets X, Manconi M (2016) Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. Int J Pharm 513(1–2):153–163

    Article  CAS  PubMed  Google Scholar 

  9. Wang Q, Bao Y, Ahire J, Chao Y (2013) Co-encapsulation of biodegradable nanoparticles with silicon quantum dots and quercetin for monitored delivery. Adv Healthc Mater 2(3):459–466

    Article  CAS  PubMed  Google Scholar 

  10. Wang G, Wang JJ, Chen XL, Du SM, Li DS, Pei ZJ, Wu LB (2013) The JAK2/STAT3 and mitochondrial pathways are essential for quercetin nanoliposome-induced C6 glioma cell death. Cell Death Dis 4:e746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang G, Wang J, Luo J, Wang L, Chen X, Zhang L, Jiang S (2013) PEG2000-DPSE-coated quercetin nanoparticles remarkably enhanced anticancer effects through induced programed cell death on C6 glioma cells. J Biomed Mater Res A 101(11):3076–3085

    PubMed  Google Scholar 

  12. Moussa M, Goldberg SN, Kumar G, Sawant RR, Levchenko T, Torchilin VP, Ahmed M (2014) Nanodrug-enhanced radiofrequency tumor ablation: effect of micellar or liposomal carrier on drug delivery and treatment efficacy. PLoS One 9(8):e102727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chen SQ, Wang C, Tao S, Wang YX, Hu FQ, Yuan H (2018) Rational design of redox-responsive and P-gp-inhibitory lipid nanoparticles with high entrapment of paclitaxel for tumor therapy. Adv Healthc Mater 7(17):e1800485

    Article  PubMed  CAS  Google Scholar 

  14. Ojeda-Serna IE, Rocha-Guzman NE, Gallegos-Infante JA, Chairez-Ramirez MH, Rosas-Flores W, Perez-Martinez JD, Gonzalez-Laredo RF (2019) Water-in-oil organogel based emulsions as a tool for increasing bioaccessibility and cell permeability of poorly water-soluble nutraceuticals. Food Res Int 120:415–424

    Article  CAS  PubMed  Google Scholar 

  15. Omwenga EO, Hensel A, Shitandi A, Goycoolea FM (2018) Chitosan nanoencapsulation of flavonoids enhances their quorum sensing and biofilm formation inhibitory activities against an E.coli Top 10 biosensor. Colloids Surf B Biointerfaces 164:125–133

    Article  CAS  PubMed  Google Scholar 

  16. Balakrishnan S, Mukherjee S, Das S, Bhat FA, Raja Singh P, Patra CR, Arunakaran J (2017) Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem Funct 35(4):217–231

    Article  CAS  PubMed  Google Scholar 

  17. Srisa-Nga K, Mankhetkorn S, Okonogi S, Khonkarn R (2018) Delivery of superparamagnetic polymeric micelles loaded with quercetin to hepatocellular carcinoma cells. J Pharm Sci 108(2):1–11

    Google Scholar 

  18. Yuan YG, Wang YH, Xing HH, Gurunathan S (2017) Quercetin-mediated synthesis of graphene oxide-silver nanoparticle nanocomposites: a suitable alternative nanotherapy for neuroblastoma. Int J Nanomedicine 12:5819–5839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, Bahramsoltani R, Karimi-Soureh Z, Rahimi R, Abdollahi M (2017) Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int J Nanomedicine 12:2689–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kashyap D, Garg VK, Tuli HS, Yerer MB, Sak K, Sharma AK, Sandhu SS (2019) Fisetin and quercetin: promising flavonoids with chemopreventive potential. Biomolecules 9(5). https://doi.org/10.3390/biom9050174

  21. Podhajcer OL, Friedlander M, Graziani Y (1980) Effect of liposome-encapsulated quercetin on DNA synthesis, lactate production, and cyclic adenosine 3′:5′ monophosphate level in Ehrlich ascites tumor cells. Cancer Res 40(4):1344–1350

    CAS  PubMed  Google Scholar 

  22. Spector M, O’Neal S, Racker E (1980) Reconstitution of the Na+K+ pump of ehrlich ascites tumor and enhancement of efficiency by quercetin. J Biol Chem 255(12):5504–5507

    CAS  PubMed  Google Scholar 

  23. Goniotaki M, Hatziantoniou S, Dimas K, Wagner M, Demetzos C (2004) Encapsulation of naturally occurring flavonoids into liposomes: physicochemical properties and biological activity against human cancer cell lines. J Pharm Pharmacol 56(10):1217–1224

    Article  CAS  PubMed  Google Scholar 

  24. Tammela P, Laitinen L, Galkin A, Wennberg T, Heczko R, Vuorela H, Vuorela P (2004) Permeability characteristics and membrane affinity of flavonoids and alkyl gallates in Caco-2 cells and in phospholipid vesicles. Arch Biochem Biophys 425(2):193–199

    Article  CAS  PubMed  Google Scholar 

  25. Yuan ZP, Chen LJ, Fan LY, Tang MH, Yang GL, Yang HS, Wei YQ (2006) Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin Cancer Res 12(10):3193–3199

    Article  CAS  PubMed  Google Scholar 

  26. Yuan ZP, Chen LJ, Wei YQ, Fan LY, Tang MH, Yang GL (2006) Nanoliposomal quercetin inhibits formation of malignant ascites of hepatocellular carcinoma. Ai Zheng 25(8):941–945

    CAS  PubMed  Google Scholar 

  27. Mandal AK, Das S, Mitra M, Chakrabarti RN, Chatterjee M, Das N (2008) Vesicular flavonoid in combating diethylnitrosamine induced hepatocarcinoma in rat model. J Exp Ther Oncol 7(2):123–133

    CAS  PubMed  Google Scholar 

  28. Ghosh D, Ghosh S, Sarkar S, Ghosh A, Das N, Das Saha K, Mandal AK (2010) Quercetin in vesicular delivery systems: evaluation in combating arsenic-induced acute liver toxicity associated gene expression in rat model. Chem Biol Interact 186(1):61–71

    Article  CAS  PubMed  Google Scholar 

  29. Wong MY, Chiu GN (2010) Simultaneous liposomal delivery of quercetin and vincristine for enhanced estrogen-receptor-negative breast cancer treatment. Anticancer Drugs 21(4):401–410

    Article  CAS  PubMed  Google Scholar 

  30. Ghosh S, Dungdung SR, Chowdhury ST, Mandal AK, Sarkar S, Ghosh D, Das N (2011) Encapsulation of the flavonoid quercetin with an arsenic chelator into nanocapsules enables the simultaneous delivery of hydrophobic and hydrophilic drugs with a synergistic effect against chronic arsenic accumulation and oxidative stress. Free Radic Biol Med 51(10):1893–1902

    Article  CAS  PubMed  Google Scholar 

  31. Ghosh A, Mandal AK, Sarkar S, Das N (2011) Hepatoprotective and neuroprotective activity of liposomal quercetin in combating chronic arsenic induced oxidative damage in liver and brain of rats. Drug Deliv 18(6):451–459

    Article  CAS  PubMed  Google Scholar 

  32. Wong MY, Chiu GN (2011) Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model. Nanomedicine (Lond) 7(6):834–840

    Article  CAS  Google Scholar 

  33. Yang W, Ahmed M, Tasawwar B, Levchenko T, Sawant RR, Collins M, Goldberg SN (2011) Radiofrequency ablation combined with liposomal quercetin to increase tumour destruction by modulation of heat shock protein production in a small animal model. Int J Hyperthermia 27(6):527–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sinha R, Gadhwal MK, Joshi UJ, Srivastava S, Govil G (2012) Modifying effect of quercetin on model biomembranes: studied by molecular dynamic simulation, DSC and NMR. Int J Curr Pharm Res 4(1):70–79

    CAS  Google Scholar 

  35. Wang BL, Gao X, Men K, Qiu J, Yang B, Gou ML, Wei YQ (2012) Treating acute cystitis with biodegradable micelle-encapsulated quercetin. Int J Nanomedicine 7:2239–2247

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang G, Wang JJ, Yang GY, Du SM, Zeng N, Li DS, Ye F (2012) Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int J Nanomedicine 7:271–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang W, Ahmed M, Tasawwar B, Levchenko T, Sawant RR, Torchilin V, Goldberg SN (2012) Combination radiofrequency (RF) ablation and IV liposomal heat shock protein suppression: reduced tumor growth and increased animal endpoint survival in a small animal tumor model. J Control Release 160(2):239–244

    Article  CAS  PubMed  Google Scholar 

  38. He B, Wang X, Shi HS, Xiao WJ, Zhang J, Mu B, Wang YS (2013) Quercetin liposome sensitizes colon carcinoma to thermotherapy and thermochemotherapy in mice models. Integr Cancer Ther 12(3):264–270

    Article  CAS  PubMed  Google Scholar 

  39. Hu F, Bu YZ, Liang R, Duan RM, Wang S, Han RM, Skibsted LH (2013) Quercetin and daidzein beta-apo-14′-carotenoic acid esters as membrane antioxidants. Free Radic Res 47(5):413–421

    Article  CAS  PubMed  Google Scholar 

  40. Liu H, Xue JX, Li X, Ao R, Lu Y (2013) Quercetin liposomes protect against radiation-induced pulmonary injury in a murine model. Oncol Lett 6(2):453–459

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zheng N-G, Mo S-J, Li J-P, Wu J-L (2014) Anti-CSC effects in human esophageal squamous cell carcinomas and Eca109/9706 cells induced by nanoliposomal quercetin alone or combined with CD 133 Antiserum. Asian Pac J Cancer Prev 15(20):8679–8684

    Article  PubMed  Google Scholar 

  42. Zheng N-G, Wang J-L, Yang S-L, Wu J-L (2014) Aberrant epigenetic alteration in Eca9706 cells modulated by nanoliposomal quercetin combined with butyrate mediated via epigenetic-NF-κB signaling. Asian Pac J Cancer Prev 15(11):4539–4543

    Article  PubMed  Google Scholar 

  43. Dabbagh-Bazarbachi H, Clergeaud G, Quesada IM, Ortiz M, O’Sullivan CK, Fernandez-Larrea JB (2014) Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model. J Agric Food Chem 62(32):8085–8093

    Article  CAS  PubMed  Google Scholar 

  44. Hu J, Wang J, Wang G, Yao Z, Dang X (2016) Pharmacokinetics and antitumor efficacy of DSPE-PEG2000 polymeric liposomes loaded with quercetin and temozolomide: Analysis of their effectiveness in enhancing the chemosensitization of drug-resistant glioma cells. Int J Mol Med 37(3):690–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ravichandiran V, Masilamani K, Senthilnathan B, Maheshwaran A, Wong TW, Roy P (2017) Quercetin-decorated curcumin liposome design for cancer therapy: in-vitro and in-vivo studies. Curr Drug Deliv 14(8):1053–1059

    Article  CAS  PubMed  Google Scholar 

  46. Rodriguez EB, Almeda RA, Vidallon MLP, Reyes CT (2018) Enhanced bioactivity and efficient delivery of quercetin through nanoliposomal encapsulation using rice bran phospholipids. J Sci Food Agric 99(4):1980–1989

    Google Scholar 

  47. Dos Santos DM, Rocha CVJ, da Silveira EF, Marinho MAG, Rodrigues MR, Silva NO, de Lima VR (2018) In vitro anti/pro-oxidant activities of R. ferruginea extract and its effect on glioma cell viability: correlation with phenolic compound content and effects on membrane dynamics. J Membr Biol 251(2):247–261

    Article  PubMed  CAS  Google Scholar 

  48. Zhou X, Liu HY, Zhao H, Wang T (2018) RGD-modified nanoliposomes containing quercetin for lung cancer targeted treatment. Onco Targets Ther 11:5397–5405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kruszewski M, Kusaczuk M, Kotynska J, Gal M, Kretowski R, Cechowska-Pasko M, Naumowicz M (2018) The effect of quercetin on the electrical properties of model lipid membranes and human glioblastoma cells. Bioelectrochemistry 124:133–141

    Article  CAS  PubMed  Google Scholar 

  50. Zuo J, Jiang Y, Zhang E, Chen Y, Liang Z, Zhu J, Zhen Y (2019) Synergistic effects of 7-O-geranylquercetin and siRNAs on the treatment of human breast cancer. Life Sci 227:145–152

    Article  CAS  PubMed  Google Scholar 

  51. Riaz MK, Zhang X, Wong KH, Chen H, Liu Q, Chen X, Yang Z (2019) Pulmonary delivery of transferrin receptors targeting peptide surface-functionalized liposomes augments the chemotherapeutic effect of quercetin in lung cancer therapy. Int J Nanomedicine 14:2879–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Soloviev AI, Kizub IV (2019) Mechanisms of vascular dysfunction evoked by ionizing radiation and possible targets for its pharmacological correction. Biochem Pharmacol 159:121–139

    Article  CAS  PubMed  Google Scholar 

  53. Yu J, Chen H, Jiang L, Wang J, Dai J, Wang J (2019) Codelivery of adriamycin and P-gp inhibitor quercetin using PEGylated liposomes to overcome cancer drug resistance. J Pharm Sci 108(5):1788–1799

    Article  CAS  PubMed  Google Scholar 

  54. Murgia S, Bonacchi S, Falchi AM, Lampis S, Lippolis V, Meli V, Caltagirone C (2013) Drug-loaded fluorescent cubosomes: versatile nanoparticles for potential theranostic applications. Langmuir 29(22):6673–6679

    Article  CAS  PubMed  Google Scholar 

  55. Minaei A, Sabzichi M, Ramezani F, Hamishehkar H, Samadi N (2016) Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol Biol Rep 43(2):99–105

    Article  CAS  PubMed  Google Scholar 

  56. Karthivashan G, Masarudin MJ, Kura AU, Abas F, Fakurazi S (2016) Optimization, formulation, and characterization of multiflavonoids-loaded flavanosome by bulk or sequential technique. Int J Nanomedicine 11:3417–3434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Babazadeh A, Zeinali M, Hamishehkar H (2018) Nano-phytosome: a developing platform for herbal anti-cancer agents in cancer therapy. Curr Drug Targets 19(2):170–180

    Article  CAS  PubMed  Google Scholar 

  58. Tavano L, Mauro L, Naimo GD, Bruno L, Picci N, Ando S, Muzzalupo R (2016) Further evolution of multifunctional niosomes based on pluronic surfactant: dual active targeting and drug combination properties. Langmuir 32(35):8926–8933

    Article  CAS  PubMed  Google Scholar 

  59. Hemati M, Haghiralsadat F, Yazdian F, Jafari F, Moradi A, Malekpour-Dehkordi Z (2019) Development and characterization of a novel cationic PEGylated niosome-encapsulated forms of doxorubicin, quercetin and siRNA for the treatment of cancer by using combination therapy. Artif Cells Nanomed Biotechnol 47(1):1295–1311

    Article  CAS  PubMed  Google Scholar 

  60. Tan Q, Liu W, Guo C, Zhai G (2011) Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int J Nanomedicine 6:1621–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gao X, Wang B, Wei X, Men K, Zheng F, Zhou Y, Wei Y (2012) Anticancer effect and mechanism of polymer micelle-encapsulated quercetin on ovarian cancer. Nanoscale 4(22):7021–7030

    Article  CAS  PubMed  Google Scholar 

  62. Xu G, Shi H, Ren L, Gou H, Gong D, Gao X, Huang N (2015) Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles. Int J Nanomedicine 10:2051–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang G, Wang JJ, Chen XL, Du L, Li F (2016) Quercetin-loaded freeze-dried nanomicelles: Improving absorption and anti-glioma efficiency in vitro and in vivo. J Control Release 235:276–290

    Article  CAS  PubMed  Google Scholar 

  64. Zhao J, Liu J, Wei T, Ma X, Cheng Q, Huo S, Liang XJ (2016) Quercetin-loaded nanomicelles to circumvent human castration-resistant prostate cancer in vitro and in vivo. Nanoscale 8(9):5126–5138

    Article  CAS  PubMed  Google Scholar 

  65. Patidar P, Pillai SA, Sheth U, Bahadur P, Bahadur A (2017) Glucose triggered enhanced solubilisation, release and cytotoxicity of poorly water soluble anti-cancer drugs fromT1307 micelles. J Biotechnol 254:43–50

    Article  CAS  PubMed  Google Scholar 

  66. Rich GT, Buchweitz M, Winterbone MS, Kroon PA, Wilde PJ (2017) Towards an understanding of the low bioavailability of quercetin: a study of its interaction with intestinal lipids. Nutrients 9(2). https://doi.org/10.3390/nu9020111

  67. Sandhu PS, Kumar R, Katare OP, Singh B (2017) Surface-tailored nanomixed micelles containing quercetin-salicylic acid physical complex for enhanced cellular and in vivo activities: a quality by design perspective. Nanomedicine (Lond) 12(11):1281–1303

    Article  CAS  Google Scholar 

  68. Ahmad N, Ahmad R, Naqvi AA, Alam MA, Ashafaq M, Abdur Rub R, Ahmad FJ (2018) Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artif Cells Nanomed Biotechnol 46(4):717–729

    Article  CAS  PubMed  Google Scholar 

  69. Ghosh A, Mandal AK, Sarkar S, Panda S, Das N (2009) Nanoencapsulation of quercetin enhances its dietary efficacy in combating arsenic-induced oxidative damage in liver and brain of rats. Life Sci 84(3–4):75–80

    Article  CAS  PubMed  Google Scholar 

  70. Ghosh A, Ghosh D, Sarkar S, Mandal AK, Thakur Choudhury S, Das N (2012) Anticarcinogenic activity of nanoencapsulated quercetin in combating diethylnitrosamine-induced hepatocarcinoma in rats. Eur J Cancer Prev 21(1):32–41

    Article  CAS  PubMed  Google Scholar 

  71. Ding B, Chen P, Kong Y, Zhai Y, Pang X, Dou J, Zhai G (2014) Preparation and evaluation of folate-modified lipid nanocapsules for quercetin delivery. J Drug Target 22(1):67–75

    Article  CAS  PubMed  Google Scholar 

  72. El-Gogary RI, Rubio N, Wang JT, Al-Jamal WT, Bourgognon M, Kafa H, Al-Jamal KT (2014) Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano 8(2):1384–1401

    Article  CAS  PubMed  Google Scholar 

  73. Mandal AK, Ghosh D, Sarkar S, Ghosh A, Swarnakar S, Das N (2014) Nanocapsulated quercetin downregulates rat hepatic MMP-13 and controls diethylnitrosamine-induced carcinoma. Nanomedicine (Lond) 9(15):2323–2337

    Article  CAS  Google Scholar 

  74. Hatahet T, Morille M, Shamseddin A, Aubert-Pouessel A, Devoisselle JM, Begu S (2017) Dermal quercetin lipid nanocapsules: Influence of the formulation on antioxidant activity and cellular protection against hydrogen peroxide. Int J Pharm 518(1–2):167–176

    Article  CAS  PubMed  Google Scholar 

  75. Hatahet T, Morille M, Hommoss A, Devoisselle JM, Muller RH, Begu S (2018) Liposomes, lipid nanocapsules and smartCrystals(R): a comparative study for an effective quercetin delivery to the skin. Int J Pharm 542(1–2):176–185

    Article  CAS  PubMed  Google Scholar 

  76. Schwingel TE, Klein CP, Nicoletti NF, Dora CL, Hadrich G, Bica CG, Morrone FB (2014) Effects of the compounds resveratrol, rutin, quercetin, and quercetin nanoemulsion on oxaliplatin-induced hepatotoxicity and neurotoxicity in mice. Naunyn Schmiedebergs Arch Pharmacol 387(9):837–848

    Article  CAS  PubMed  Google Scholar 

  77. Pangeni R, Panthi VK, Yoon IS, Park JW (2018) Preparation, characterization, and in vivo evaluation of an oral multiple nanoemulsive system for co-delivery of pemetrexed and quercetin. Pharmaceutics 10(3). https://doi.org/10.3390/pharmaceutics10030158

  78. Arbain NH, Salim N, Wui WT, Basri M, Rahman MBA (2018) Optimization of quercetin loaded palm oil ester based nanoemulsion formulation for pulmonary delivery. J Oleo Sci 67(8):933–940. https://doi.org/10.5650/jos.ess17253

    Article  CAS  PubMed  Google Scholar 

  79. Arbain NH, Salim N, Masoumi HRF, Wong TW, Basri M, Abdul Rahman MB (2019) In vitro evaluation of the inhalable quercetin loaded nanoemulsion for pulmonary delivery. Drug Deliv Transl Res 9(2):497–507. https://doi.org/10.1007/s13346-018-0509-5

    Article  CAS  PubMed  Google Scholar 

  80. Bose S, Du Y, Takhistov P, Michniak-Kohn B (2013) Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int J Pharm 441(1–2):56–66

    Article  CAS  PubMed  Google Scholar 

  81. Varshosaz J, Jafarian A, Salehi G, Zolfaghari B (2014) Comparing different sterol containing solid lipid nanoparticles for targeted delivery of quercetin in hepatocellular carcinoma. J Liposome Res 24(3):191–203

    Article  CAS  PubMed  Google Scholar 

  82. Khoee S, Rahmatolahzadeh R (2012) Synthesis and characterization of pH-responsive and folated nanoparticles based on self-assembled brush-like PLGA/PEG/AEMA copolymer with targeted cancer therapy properties: A comprehensive kinetic study. Eur J Med Chem 50:416–427

    Article  CAS  PubMed  Google Scholar 

  83. Sahu S, Saraf S, Kaur CD, Saraf S (2013) Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak J Biol Sci 16(13):601–609

    Article  CAS  PubMed  Google Scholar 

  84. Jain AK, Thanki K, Jain S (2013) Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity. Mol Pharm 10(9):3459–3474

    Article  CAS  PubMed  Google Scholar 

  85. Zafar S, Negi LM, Verma AK, Kumar V, Tyagi A, Singh P, Talegaonkar S (2014) Sterically stabilized polymeric nanoparticles with a combinatorial approach for multi drug resistant cancer: in vitro and in vivo investigations. Int J Pharm 477(1–2):454–468

    Article  CAS  PubMed  Google Scholar 

  86. Sharma G, Park J, Sharma AR, Jung JS, Kim H, Chakraborty C, Nam JS (2015) Methoxy poly(ethylene glycol)-poly(lactide) nanoparticles encapsulating quercetin act as an effective anticancer agent by inducing apoptosis in breast cancer. Pharm Res 32(2):723–735

    Article  CAS  PubMed  Google Scholar 

  87. David KI, Jaidev LR, Sethuraman S, Krishnan UM (2015) Dual drug loaded chitosan nanoparticles-sugar – coated arsenal against pancreatic cancer. Colloids Surf B Biointerfaces 135:689–698

    Article  CAS  PubMed  Google Scholar 

  88. Du H, Liu M, Yang X, Zhai G (2015) The role of glycyrrhetinic acid modification on preparation and evaluation of quercetin-loaded chitosan-based self-aggregates. J Colloid Interface Sci 460:87–96

    Article  CAS  PubMed  Google Scholar 

  89. Pandey SK, Patel DK, Thakur R, Mishra DP, Maiti P, Haldar C (2015) Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation. Int J Biol Macromol 75:521–529

    Article  CAS  PubMed  Google Scholar 

  90. Zhu X, Zeng X, Zhang X, Cao W, Wang Y, Chen H, Shi X (2016) The effects of quercetin-loaded PLGA-TPGS nanoparticles on ultraviolet B-induced skin damages in vivo. Nanomedicine (Lond) 12(3):623–632

    Article  CAS  Google Scholar 

  91. Fatma S, Talegaonkar S, Iqbal Z, Panda AK, Negi LM, Goswami DG, Tariq M (2016) Novel flavonoid-based biodegradable nanoparticles for effective oral delivery of etoposide by P-glycoprotein modulation: an in vitro, ex vivo and in vivo investigations. Drug Deliv 23(2):500–511

    Article  CAS  PubMed  Google Scholar 

  92. Lv L, Liu C, Chen C, Yu X, Chen G, Shi Y, Li G (2016) Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer. Oncotarget 7(22):32184–32199

    Article  PubMed  PubMed Central  Google Scholar 

  93. Guan X, Gao M, Xu H, Zhang C, Liu H, Lv L, Tian Y (2016) Quercetin-loaded poly (lactic-co-glycolic acid)-d-alpha-tocopheryl polyethylene glycol 1000 succinate nanoparticles for the targeted treatment of liver cancer. Drug Deliv 23(9):3307–3318

    Article  CAS  PubMed  Google Scholar 

  94. Saha C, Kaushik A, Das A, Pal S, Majumder D (2016) Anthracycline drugs on modified surface of quercetin-loaded polymer nanoparticles: a dual drug delivery model for cancer treatment. PLoS One 11(5):e0155710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Suksiriworapong J, Phoca K, Ngamsom S, Sripha K, Moongkarndi P, Junyaprasert VB (2016) Comparison of poly(epsilon-caprolactone) chain lengths of poly(epsilon-caprolactone)-co-d-alpha-tocopheryl-poly(ethylene glycol) 1000 succinate nanoparticles for enhancement of quercetin delivery to SKBR3 breast cancer cells. Eur J Pharm Biopharm 101:15–24

    Article  CAS  PubMed  Google Scholar 

  96. Xing L, Lyu JY, Yang Y, Cui PF, Gu LQ, Qiao JB, Jiang HL (2017) pH-Responsive de-PEGylated nanoparticles based on triphenylphosphine-quercetin self-assemblies for mitochondria-targeted cancer therapy. Chem Commun (Camb) 53(62):8790–8793

    Article  CAS  Google Scholar 

  97. Zhu B, Yu L, Yue Q (2017) Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy. Biomed Pharmacother 91:287–294

    Article  CAS  PubMed  Google Scholar 

  98. Oliveira AI, Pinho C, Fonte P, Sarmento B, Dias ACP (2018) Development, characterization, antioxidant and hepatoprotective properties of poly(E-caprolactone) nanoparticles loaded with a neuroprotective fraction of Hypericum perforatum. Int J Biol Macromol 110:185–196

    Article  CAS  PubMed  Google Scholar 

  99. Baksi R, Singh DP, Borse SP, Rana R, Sharma V, Nivsarkar M (2018) In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed Pharmacother 106:1513–1526

    Article  CAS  PubMed  Google Scholar 

  100. Yamina AM, Fizir M, Itatahine A, He H, Dramou P (2018) Preparation of multifunctional PEG-graft-Halloysite Nanotubes for Controlled Drug Release, Tumor Cell Targeting, and Bio-imaging. Colloids Surf B Biointerfaces 170:322–329

    Article  PubMed  CAS  Google Scholar 

  101. Bishayee K, Khuda-Bukhsh AR, Huh SO (2015) PLGA-loaded gold-nanoparticles precipitated with Quercetin downregulate HDAC-Akt activities controlling proliferation and Activate p53-ROS crosstalk to induce apoptosis in hepatocarcinoma cells. Mol Cells 38(6):518–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lou M, Zhang LN, Ji PG, Feng FQ, Liu JH, Yang C, Wang L (2016) Quercetin nanoparticles induced autophagy and apoptosis through AKT/ERK/Caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomed Pharmacother 84:1–9

    Article  CAS  PubMed  Google Scholar 

  103. Luo CL, Liu YQ, Wang P, Song CH, Wang KJ, Dai LP, Ye H (2016) The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed Pharmacother 82:595–605

    Article  CAS  PubMed  Google Scholar 

  104. Balakrishnan S, Bhat FA, Raja Singh P, Mukherjee S, Elumalai P, Das S, Arunakaran J (2016) Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 49(6):678–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xu MX, Wang M, Yang WW (2017) Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-kappaB signaling and Nrf2 pathway in high fat diet fed mice. Int J Nanomedicine 12:327–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ren KW, Li YH, Wu G, Ren JZ, Lu HB, Li ZM, Han XW (2017) Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int J Oncol 50(4):1299–1311

    Article  CAS  PubMed  Google Scholar 

  107. Verma NK, Crosbie-Staunton K, Satti A, Gallagher S, Ryan KB, Doody T, Gun’ko YK (2013) Magnetic core-shell nanoparticles for drug delivery by nebulization. J Nanobiotechnol 11:1

    Article  CAS  Google Scholar 

  108. Kumar SR, Priyatharshni S, Babu VN, Mangalaraj D, Viswanathan C, Kannan S, Ponpandian N (2014) Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell lines for chemotherapy applications. J Colloid Interface Sci 436:234–242

    Article  PubMed  CAS  Google Scholar 

  109. Mashhadi Malekzadeh A, Ramazani A, Tabatabaei Rezaei SJ, Niknejad H (2017) Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy. J Colloid Interface Sci 490:64–73

    Article  CAS  PubMed  Google Scholar 

  110. Mittal AK, Kumar S, Banerjee UC (2014) Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J Colloid Interface Sci 431:194–199

    Article  CAS  PubMed  Google Scholar 

  111. Martirosyan A, Grintzalis K, Polet M, Laloux L, Schneider YJ (2016) Tuning the inflammatory response to silver nanoparticles via quercetin in Caco-2 (co-)cultures as model of the human intestinal mucosa. Toxicol Lett 253:36–45

    Article  CAS  PubMed  Google Scholar 

  112. Gismondi A, Reina G, Orlanducci S, Mizzoni F, Gay S, Terranova ML, Canini A (2015) Nanodiamonds coupled with plant bioactive metabolites: a nanotech approach for cancer therapy. Biomaterials 38:22–35

    Article  CAS  PubMed  Google Scholar 

  113. Gupta P, Authimoolam SP, Hilt JZ, Dziubla TD (2015) Quercetin conjugated poly(beta-amino esters) nanogels for the treatment of cellular oxidative stress. Acta Biomater 27:194–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lockhart JN, Stevens DM, Beezer DB, Kravitz A, Harth E (2015) Dual drug delivery of tamoxifen and quercetin: regulated metabolism for anticancer treatment with nanosponges. J Control Release 220(Pt B):751–757

    Article  CAS  PubMed  Google Scholar 

  115. Cruz Dos Santos S, Osti Silva N, Dos Santos Espinelli JBJ, Germani Marinho MA, Vieira Borges Z, Bruzamarello Caon Branco N, Rodrigues de Lima V (2019) Molecular interactions and physico-chemical characterization of quercetin-loaded magnetoliposomes. Chem Phys Lipids 218:22–33

    Article  CAS  PubMed  Google Scholar 

  116. Alidadi H, Khorsandi L, Shirani M (2018) Effects of quercetin on tubular cell apoptosis and kidney damage in rats induced by titanium dioxide nanoparticles. Malays J Med Sci 25(2):72–81. https://doi.org/10.21315/mjms2018.25.2.8

    Article  PubMed  PubMed Central  Google Scholar 

  117. George D, Maheswari PU, Begum K (2019) Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. Int J Biol Macromol 132:784–794

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S.S., Verma, P.R.P., Kar, S., Singh, S.K. (2020). Quercetin-Loaded Nanomedicine as Oncotherapy. In: Rahman, M., Beg, S., Kumar, V., Ahmad, F. (eds) Nanomedicine for Bioactives . Springer, Singapore. https://doi.org/10.1007/978-981-15-1664-1_5

Download citation

Publish with us

Policies and ethics