Skip to main content

Polyphenol-Loaded Nanomedicines Against Skin Aging

  • Chapter
  • First Online:
Book cover Nanomedicine for Bioactives

Abstract

Aging of the skin is an unavoidable process, and different factors are responsible for this process, and the major contributing factor is ultraviolet rays with other factors being dry skin, smoking, lack of nutrients, hormones, etc. Aging of the skin is divided into two types: one is intrinsic aging and other is extrinsic which is also known as photoaging. Spotting, elasticity loss, sagging, wrinkles, and weakening of the skin are generally observed in aged skin. Different approaches are available to averting skin aging. Literature cited about various antioxidants used as cosmeceuticals in skin aging. Natural polyphenols are important phytoconstituents which have scavenging property and form complex with proteins. This property of polyphenols makes it an interesting concept in the treatment of skin aging. Polyphenols lack long-term stability, have low bioavailability rate, are very sensitive to light and heat, have poor solubility, and have bitter and astringent taste. This property limits its use in foods or in medicines. To evade these shortcomings, researchers focus on novel delivery approaches and nanotechnology; that is, nanocarriers are considered to be a favourable approach. In this review, we provide a general demonstration of plant-derived polyphenols and its bioavailability, different types of nanocarriers for pharmaceutical and cosmetology purposes, and product-oriented solutions used in skin aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Byrd AL, Belkaid Y, Segre JA (2018) The human skin microbiome. Nat Rev Microbiol 16:143–155

    Article  CAS  Google Scholar 

  2. Shukla T, Upmanyu N, Agrawal M, Saraf S, Saraf S, Alexander A (2018) Biomedical applications of microemulsion through dermal and transdermal route. Biomed Pharmacother 108:1477–1494

    Article  CAS  Google Scholar 

  3. Jimenez-Escrig A (2006) Polyphenol and carotenoid protection in biological systems through the modulation of antioxidant enzymes. Curr Enzym Inhib. https://doi.org/10.2174/157340806777934793

  4. Kammeyer A, Luiten RM (2015) Oxidation events and skin aging. Ageing Res Rev 21:16–29

    Article  CAS  Google Scholar 

  5. Masaki H (2010) Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci 58(2):85–90

    Article  CAS  Google Scholar 

  6. Petti S, Scully C (2009) Polyphenols, oral health and disease: a review. J Dent 37(6):413–423

    Article  CAS  Google Scholar 

  7. Ignat I, Volf I, Popa VI (2011) A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem 126(4):1821–1835

    Article  CAS  Google Scholar 

  8. Williamson G, Manach C (2005) Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 81(1 Suppl):243S–255S

    Article  CAS  Google Scholar 

  9. Handique JG, Baruah JB (2002) Polyphenolic compounds: an overview. React Funct Polym. https://doi.org/10.1016/S1381-5148(02)00091-3

  10. Inoue T, Tatemori S, Muranaka N, Hirahara Y, Homma S, Nakane T et al (2012) The identification of vitamin e homologues in medicinal plant samples using ESI(+)-LC-MS3. J Agric Food Chem 60(38):9581–9588

    Article  CAS  Google Scholar 

  11. Romieu I, Parra S, Hernández JF, Madrigal H, Willett W, Hernández M (1999) Questionnaire assessment of antioxidants and retinol intakes in Mexican women. Arch Med Res 30(3):224–239

    Article  CAS  Google Scholar 

  12. Yilmaz Y, Toledo RT (2004) Major flavonoids in grape seeds and skins: antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem 52(2):255–260

    Article  CAS  Google Scholar 

  13. Buryanovskyy L, Fu Y, Boyd M, Ma Y, Hsieh TC, Wu JM et al (2004) Crystal structure of quinone reductase 2 in complex with resveratrol. In: Biochemistry

    Google Scholar 

  14. Bisht K, Wagner KH, Bulmer AC (2010) Curcumin, resveratrol and flavonoids as anti-inflammatory, cyto- and DNA-protective dietary compounds. Toxicology 278(1):88–100

    Article  CAS  Google Scholar 

  15. Bouayed J, Hoffmann L, Bohn T (2011) Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: bioaccessibility and potential uptake. Food Chem 128(1):14–21

    Article  CAS  Google Scholar 

  16. Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130(8S Suppl):2073S–2085S. https://doi.org/10.1093/jn/130.8.2073S

  17. Bohn T (2014) Dietary factors affecting polyphenol bioavailability. Nutr Rev 72(7):429–452

    Article  Google Scholar 

  18. Landete JM (2012) Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health. Crit Rev Food Sci Nutr 52(10):936–948

    Article  CAS  Google Scholar 

  19. Ahmed W, Elhissi A, Subramani K (2012) Introduction to Nanotechnology. In: Nanobiomaterials in clinical dentistry. Elsevier, Amsterdam

    Google Scholar 

  20. Bilia AR, Isacchi B, Righeschi C, Guccione C, Bergonzi MC (2014) Flavonoids loaded in nanocarriers: an opportunity to increase oral bioavailability and bioefficacy. Food Nutr Sci. https://doi.org/10.4236/fns.2014.513132

  21. Hu B, Liu X, Zhang C, Zeng X (2017) Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. J Food Drug Anal 25(1):3–15

    Article  CAS  Google Scholar 

  22. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2(1):8–21

    Article  Google Scholar 

  23. Vinardell MP, Mitjans M (2015) Nanocarriers for delivery of antioxidants on the skin. Cosmetics. https://doi.org/10.3390/cosmetics2040342

  24. Italia JL, Datta P, Ankola DD, Kumar MNVR (2008) Nanoparticles enhance per oral bioavailability of poorly available molecules: epigallocatechin gallate nanoparticles ameliorates cyclosporine induced nephrotoxicity in rats at three times lower dose than oral solution. J Biomed Nanotechnol. https://doi.org/10.1166/jbn.2008.341

  25. Zu YG, Yuan S, Zhao XH, Zhang Y, Zhang XN, Jiang R (2009) Preparation, activity and targeting ability evaluation in vitro on folate mediated epigallocatechin-3-gallate albumin nanoparticles. Yao Xue Xue Bao 44(5):525–531

    CAS  PubMed  Google Scholar 

  26. Dube A, Ng K, Nicolazzo JA, Larson I (2010) Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chem. https://doi.org/10.1016/j.foodchem.2010.03.027

  27. Li HL, Bin ZX, Ma YK, Zhai GX, Li LB, Lou HX (2009) Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 133(3):238–244

    Article  CAS  Google Scholar 

  28. Mercader-Ros MT, Lucas-Abellán C, Fortea MI, Gabaldón JA, Núñez-Delicado E (2010) Effect of HP-β-cyclodextrins complexation on the antioxidant activity of flavonols. Food Chem. https://doi.org/10.1016/j.foodchem.2009.05.061

  29. Lu X, Ji C, Xu H, Li X, Ding H, Ye M et al (2009) Resveratrol-loaded polymeric micelles protect cells from Aβ-induced oxidative stress. Int J Pharm 375(1–2):89–96

    Article  CAS  Google Scholar 

  30. Basavaraj S, Betageri GV (2014) Improved oral delivery of resveratrol using proliposomal formulation: investigation of various factors contributing to prolonged absorption of unmetabolized resveratrol. Expert Opin Drug Deliv 11(4):493–503

    Article  CAS  Google Scholar 

  31. Neves AR, Lúcio M, Martins S, JLC L, Reis S (2013) Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomedicine 8:177–187

    Article  Google Scholar 

  32. Li Z, Percival SS, Bonard S, Gu L (2011) Fabrication of nanoparticles using partially purified pomegranate ellagitannins and gelatin and their apoptotic effects. Mol Nutr Food Res 55(7):1096–1103

    Article  CAS  Google Scholar 

  33. Arulmozhi V, Pandian K, Mirunalini S (2013) Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B Biointerfaces 110:313–320

    Article  CAS  Google Scholar 

  34. Bala I, Bhardwaj V, Hariharan S, Kharade SV, Roy N, Kumar MNVR (2006) Sustained release nanoparticulate formulation containing antioxidant-ellagic acid as potential prophylaxis system for oral administration. J Drug Target 14(1):27–34

    Article  CAS  Google Scholar 

  35. Mowlazadeh S, Ebrahimpourmoghaddam S, Purkhosrow A, Mohammadi S (2012) Magnetic bovine serum albumin-based nanoparticles as potential controlled release drug delivery systems. Proc 4th, Int Conf Nanostructures 12–14 March, 2012, Kish Island, IR Iran

    Google Scholar 

  36. Guan Q, Sun S, Li X, Lv S, Xu T, Sun J et al (2016) Preparation, in vitro and in vivo evaluation of mPEG-PLGA nanoparticles co-loaded with syringopicroside and hydroxytyrosol. J Mater Sci Mater Med 27(2):24

    Article  Google Scholar 

  37. Li C, Zhang Y, Su T, Feng L, Long Y, Chen Z (2012) Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int J Nanomedicine 7:5995–6002

    Article  CAS  Google Scholar 

  38. Kim TH, Jiang HH, Youn YS, Park CW, Tak KK, Lee S et al (2011) Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. Int J Pharm 403(1–2):285–291

    Article  CAS  Google Scholar 

  39. Lohan SB, Bauersachs S, Ahlberg S, Baisaeng N, Keck CM, Müller RH et al (2015) Ultra-small lipid nanoparticles promote the penetration of coenzyme Q10 in skin cells and counteract oxidative stress. Eur J Pharm Biopharm 89:201–207

    Article  CAS  Google Scholar 

  40. Carlotti ME, Sapino S, Ugazio E, Gallarate M, Morel S (2012) Resveratrol in solid lipid nanoparticles. J Dispersion Sci Technol 33:465–471. https://doi.org/10.1080/01932691.2010.548274

  41. Caddeo C, Manconi M, Fadda AM, Lai F, Lampis S, Diez-Sales O et al (2013) Nanocarriers for antioxidant resveratrol: formulation approach, vesicle self-assembly and stability evaluation. Colloids Surf B Biointerfaces 111:327–332

    Article  CAS  Google Scholar 

  42. Molpeceres J, Aberturas MR, Chacon M, Berges L, Guzman M, De Souza TD et al (2015) Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin. Eur J Pharm Sci 78:204–213

    Article  Google Scholar 

  43. Guo CY, Yang CF, Li QL, Tan Q, Xi YW, Liu WN et al (2012) Development of a Quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int J Pharm 430(1–2):292–298

    CAS  Google Scholar 

  44. Schwarz JC, Baisaeng N, Hoppel M, Löw M, Keck CM, Valenta C (2013) Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int J Pharm 447(1–2):213–217

    Article  CAS  Google Scholar 

  45. Janesirisakule S, Sinthusake T, Wanichwecharungruang S (2013) Nanocarrier with self-antioxidative property for stabilizing and delivering ascorbyl palmitate into skin. J Pharm Sci 102(8):2770–2779

    Article  CAS  Google Scholar 

  46. El-Refaie WM, Elnaggar YSR, El-Massik MA, Abdallah OY (2015) Novel curcumin-loaded gel-core hyaluosomes with promising burn-wound healing potential: development, in-vitro appraisal and in-vivo studies. Int J Pharm 486(1–2):88–98

    Article  CAS  Google Scholar 

  47. Fernandes KS, Silva AHM, Mendanha SA, Rezende KR, Alonso A (2013) Antioxidant effect of 4-nerolidylcatechol and α-tocopherol in erythrocyte ghost membranes and phospholipid bilayers. Braz J Med Biol Res 46(9):780–788

    Article  CAS  Google Scholar 

  48. Pinto F, de Barros DPC, Fonseca LP (2018) Design of multifunctional nanostructured lipid carriers enriched with α-tocopherol using vegetable oils. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2018.03.042

Download references

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, D., Rahman, M.u., Kumar, V. (2020). Polyphenol-Loaded Nanomedicines Against Skin Aging. In: Rahman, M., Beg, S., Kumar, V., Ahmad, F. (eds) Nanomedicine for Bioactives . Springer, Singapore. https://doi.org/10.1007/978-981-15-1664-1_10

Download citation

Publish with us

Policies and ethics