Skip to main content

An Approach to Detect and Classify Defects in Cantilever Beams Using Dynamic Mode Decomposition and Machine Learning

  • Conference paper
  • First Online:
Intelligent Manufacturing and Energy Sustainability

Abstract

Defects in structures will affect its natural vibrations. With the advent of pure data-driven modeling techniques such as Dynamic Mode Decomposition (DMD), the defected modes can be separated from the normal modes by using vibration data from various points on the structural element. In this work we simulate the vibrations of a cantilever beam in Abaqus® without defect and with different defects. We apply DMD to compute the spatial modes of vibration in each of these cases. Furthermore we train a Support Vector Machine (SVM) classifier with the Eigen-modes we have computed, to identify defects. We also analyze this data visually using t-SNE plots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R., Czarnecki, J.J.: A review of structural health monitoring literature: 1996–2001. Los Alamos Natl. Lab. USA (2003)

    Google Scholar 

  2. Cawley, P., Adams, R.D.: The location of defects in structures from measurements of natural frequencies. J. Strain Anal. Eng. Des. 14(2), 49–57 (1979)

    Article  Google Scholar 

  3. Xiang, J., Matsumoto, T., Wang, Y., Jiang, Z.: Detect damages in conical shells using curvature mode shape and wavelet finite element method. Int. J. Mech. Sci. 66, 83–93 (2013)

    Article  Google Scholar 

  4. Stubbs, N., Osegueda, R.: Global non-destructive damage evaluation in solids. Int. J. Anal. Exp. Modal Anal. 5, 67–79 (1990)

    Google Scholar 

  5. Chondros, T.G., Dimarogonas, A.D.: Vibration of a cracked cantilever beam. J. Vib. Acoust. 120(3), 742–746 (1998)

    Article  Google Scholar 

  6. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  7. Schmid, P.J.: Application of the dynamic mode decomposition to experimental data. Exp. Fluids 50(4), 1123–1130 (2011)

    Google Scholar 

  8. Tu, J.H., Rowley, C.W., Luchtenburg, D.M., Brunton, S.L., Kutz, J.N.: On dynamic mode decomposition: theory and applications. arXiv preprint arXiv:1312.0041 (2013)

  9. Mohan, N., Soman, K.P., Kumar, S.S.: A data-driven strategy for short- term electric load forecasting using dynamic mode decomposition model. Appl. Energy 232, 229–244 (2018)

    Google Scholar 

  10. Megha, P., Sowmya, V., Soman, K.P.: Effect of dynamic mode decomposition- based dimension reduction technique on hyperspectral image classification. In: Computational Signal Processing and Analysis, pp. 89–99. Springer, New York (2018)

    Google Scholar 

  11. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Compressive sampling and dynamic mode decomposition. arXiv preprint arXiv:1312.5186 (2013)

  12. Kutz, JN., Fu, X., Brunton, S.L.: Multiresolution dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 15(2), 713–735 (2016)

    Google Scholar 

  13. Klus, S., Gelß, P., Peitz, S. and Schütte, C.: Tensor-based dynamic mode decomposition. Nonlinearity 31(7), 3359 (2018)

    Google Scholar 

  14. Barata, J.C.A., Hussein, M.S.: The moore–penrose pseudoinverse: a tutorial review of the theory. Braz. J. Phys. 42(1–2), 146–165 (2012)

    Article  Google Scholar 

  15. Xu, P.: Truncated SVD methods for discrete linear ill-posed problems. Geophys. J. Int. 135(2), 505–514 (1998)

    Article  Google Scholar 

  16. Taussky, O., Zassenhaus, H., et al.: On the similarity transformation between a matirx and its transpose. Pac. J. Math. 9(3), 893–896 (1959)

    Article  Google Scholar 

  17. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd International Conference on Machine Learning, ACM, pp. 161–168 (2006)

    Google Scholar 

  18. Van Der Maaten, L., Weinberger, K.: Stochastic triplet embedding. In: 2012 IEEE International Workshop on Machine Learning for Signal Processing, IEEE, pp. 1–6 (2012)

    Google Scholar 

  19. Bunte, K., Haase, S., Biehl, M., Villmann, T.: Stochastic neighbor embedding (SEN) for dimension reduction and visualization using arbitrary divergences. 90, 23–45 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailash Nagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nagarajan, K., Ananthu, J., Menon, V.K., Soman, K.P., Gopalakrishnan, E.A., Ramesh, A. (2020). An Approach to Detect and Classify Defects in Cantilever Beams Using Dynamic Mode Decomposition and Machine Learning. In: Reddy, A., Marla, D., Simic, M., Favorskaya, M., Satapathy, S. (eds) Intelligent Manufacturing and Energy Sustainability. Smart Innovation, Systems and Technologies, vol 169. Springer, Singapore. https://doi.org/10.1007/978-981-15-1616-0_71

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1616-0_71

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1615-3

  • Online ISBN: 978-981-15-1616-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics