Skip to main content

Case Studies and a Pitfall for Nonlinear Variational Regularization Under Conditional Stability

  • Conference paper
  • First Online:
Inverse Problems and Related Topics (ICIP2 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 310))

Included in the following conference series:

Abstract

Conditional stability   estimates are a popular tool for the regularization of ill-posed problems. A drawback in particular under nonlinear operators is that additional regularization is needed for obtaining stable approximate solutions if the validity area of such estimates is not completely known. In this paper we consider Tikhonov regularization under conditional stability estimates for nonlinear ill-posed operator equations in Hilbert scales. We summarize assertions on convergence and convergence rate in three cases describing the relative smoothness of the penalty in the Tikhonov functional and of the exact solution. For oversmoothing penalties, for which the true solution no longer attains a finite value, we present a result with modified assumptions for a priori choices of the regularization parameter yielding convergence rates of optimal order for noisy data. We strongly highlight the local character of the conditional stability estimate and demonstrate that pitfalls may occur through incorrect stability estimates. Then convergence can completely fail and the stabilizing effect of conditional stability may be lost. Comprehensive numerical case studies for some nonlinear examples illustrate such effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout, \(\mathcal {B}^H_r(\bar{x})\) denotes a closed ball in the Hilbert space H around \(\bar{x} \in H\) with radius \(r>0\). Furthermore, we call a function \(\varphi :[0,\infty ) \rightarrow [0,\infty )\) index function if it is continuous, strictly increasing and satisfies the boundary condition \(\varphi (0) = 0\).

References

  1. R.A. Adams, J.F.J. Fournier, Sobolev Spaces (Elsevier/Academic, Amsterdam, 2003)

    MATH  Google Scholar 

  2. S. Bürger, B. Hofmann, About a deficit in low order convergence rates on the example of autoconvolution. Appl. Anal. 94, 477–493 (2015)

    Article  MathSciNet  Google Scholar 

  3. J. Cheng, M. Yamamoto, On new strategy for a priori choice of regularizing parameters in Tikhonov’s regularization. Inverse Probl. 16, L31–L38 (2000)

    Article  MathSciNet  Google Scholar 

  4. H. Egger, B. Hofmann, Tikhonov regularization in Hilbert scales under conditional stability assumptions. Inverse Probl. 34, 115015 (17 pp) (2018)

    Google Scholar 

  5. H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Mathematics and its Applications, vol. 375 (Kluwer Academic Publishers Group, Dordrecht, 1996)

    Google Scholar 

  6. J. Flemming, Variational Source Conditions, Quadratic Inverse Problems, Sparsity Promoting Regularization – New Results in Modern Theory of Inverse Problems and an Application in Laser Optics (Birkhäuser, Basel, 2018)

    Google Scholar 

  7. D. Gerth, B. Hofmann, Oversmoothing regularization with \(\ell ^1\)-penalty term. AIMS Math. 4(4), 1223–1247 (2019)

    Google Scholar 

  8. R. Gorenflo, B. Hofmann, On autoconvolution and regularization. Inverse Probl. 10, 353–373 (1994)

    Article  MathSciNet  Google Scholar 

  9. R. Gorenflo, Y. Luchko, M. Yamamoto, Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18(3), 799–820 (2015)

    Article  MathSciNet  Google Scholar 

  10. R. Gorenflo, M. Yamamoto, Operator-theoretic treatment of linear Abel integral equations of first kind. Jpn. J. Indust. Appl. Math. 16(1), 137–161 (1999)

    Article  MathSciNet  Google Scholar 

  11. C.W. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg Mathematics for Scientists and Engineers (Vieweg, Braunschweig, 1993)

    Book  Google Scholar 

  12. B. Hofmann, A local stability analysis of nonlinear inverse problems, in Inverse Problems in Engineering - Theory and Practice,ed. by D. Delaunay et al. (The American Society of Mechanical Engineers, New York 1998), pp.313–320

    Google Scholar 

  13. B. Hofmann, P. Mathé, Tikhonov regularization with oversmoothing penalty for non-linear ill-posed problems in Hilbert scales. Inverse Probl. 34, 015007 (14 pp) (2018)

    Google Scholar 

  14. B. Hofmann, P. Mathé, A priori parameter choice in Tikhonov regularization with oversmoothing penalty for non-linear ill-posed problems. To appear in this volume (Chapter 8). https://doi.org/10.1007/978-981-15-1592-7_8

  15. B. Hofmann, R. Plato, On ill-posedness concepts, stable solvability and saturation. J. Inverse Ill-Posed Probl. 26, 287–297 (2018)

    Article  MathSciNet  Google Scholar 

  16. B. Hofmann, O. Scherzer, Factors influencing the ill-posedness of nonlinear problems. Inverse Probl. 10, 1277–1297 (1994)

    Article  MathSciNet  Google Scholar 

  17. B. Hofmann, M. Yamamoto, On the interplay of source conditions and variational inequalities for nonlinear ill-posed problems. Appl. Anal. 89, 1705–1727 (2010)

    Article  MathSciNet  Google Scholar 

  18. S. Krein, Y. Petunin, Scales of Banach spaces. Russ. Math. Surv. 21, 85–159 (1966)

    Article  MathSciNet  Google Scholar 

  19. A.K. Louis Inverse und Schlecht Gestellte Probleme (Teubner, Stuttgart, 1989)

    Google Scholar 

  20. M.T. Nair, S. Pereverzev, U. Tautenhahn, Regularization in Hilbert scales under general smoothing conditions. Inverse Probl. 21(6), 1851–1869 (2005)

    Article  MathSciNet  Google Scholar 

  21. F. Natterer, Error bounds for Tikhonov regularization in Hilbert scales. Appl. Anal. 18(1–2), 29–37 (1984)

    Article  MathSciNet  Google Scholar 

  22. A. Neubauer, When do Sobolev spaces form a Hilbert scale? Proc. Am. Math. Soc. 103, 557–562 (1988)

    Article  MathSciNet  Google Scholar 

  23. R. Plato, B. Hofmann, P. Mathé, Optimal rates for Lavrentiev regularization with adjoint source conditions. Math. Comp. 87(310), 785–801 (2018)

    Article  MathSciNet  Google Scholar 

  24. T. Schuster, B. Kaltenbacher, B. Hofmann, K.S. Kazimierski, Regularization methods in Banach spaces, in Radon Series on Computational and Applied Mathematics, vol. 10 (Walter de Gruyter, Berlin/Boston, 2012)

    Google Scholar 

  25. U. Tautenhahn, Error estimates for regularized solutions of nonlinear ill-posed problems. Inverse Probl. 10, 485–500 (1994)

    Article  MathSciNet  Google Scholar 

  26. U. Tautenhahn, On a general regularization scheme for nonlinear ill-posed problems II: regularization in Hilbert scales. Inverse Probl. 14, 1607–1616 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the colleagues Volker Michel and Robert Plato from the University of Siegen for a hint to the series that allowed us to formulate Model problem 9.3. The research was financially supported by Deutsche Forschungsgemeinschaft (DFG-grant HO 1454/12-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Hofmann .

Editor information

Editors and Affiliations

Appendix: Proof of Proposition 9.4

Appendix: Proof of Proposition 9.4

In this proof we set \(E:=\Vert x^\dagger \Vert _p\). To prove the convergence rate result (9.20) under the a priori parameter choice (9.21) it is sufficient to show that for sufficiently small \(\delta >0\) there are two constants \(K>0\) and \(\tilde{E}>0\) such that the inequalities

$$\begin{aligned} \Vert x_{\alpha _{*}}^\delta - x^\dag \Vert _{-a} \le K \delta \end{aligned}$$
(9.42)

and

$$\begin{aligned} \Vert x_{\alpha _{*}}^\delta - x^\dag \Vert _{p} \le \tilde{E} \end{aligned}$$
(9.43)

hold. Namely, the convergence rate (9.20) follows directly from inequality chain

$$\begin{aligned} \Vert x_{\alpha _{*}}^\delta - x^\dag \Vert _{X} \le \Vert x_{\alpha _{*}}^\delta - x^\dag \Vert _{-a}^{\frac{p}{a + p}} \Vert x_{\alpha _{*}}^\delta - x^\dag \Vert _{p} ^{\frac{a}{a + p}} \le K^{\frac{p}{a +p}} \tilde{E}^{\frac{a}{a + p}}\, \delta ^{\frac{p}{a + p}}, \end{aligned}$$

which is valid for sufficiently small \(\delta >0\) as a consequence of (9.42), (9.43) and of the interpolation inequality for the Hilbert scale \(\{X_{\tau }\}_{\tau \in \mathbb {R}}\).

As an essential tool for the proof we use auxiliary elements \(x_{\alpha }\), which are for all \(\alpha >0\) the uniquely determined minimizers over all \(x \in X\) of the artificial Tikhonov functional

$$\begin{aligned} T_{-a,\alpha }(x) := \Vert x - x^\dag \Vert _{-a}^{2} + \alpha \Vert B x\Vert _{X}^{2}. \end{aligned}$$
(9.44)

Note that the elements \(x_{\alpha }\) are independent of the noise level \(\delta >0\) and belong by definition to \(X_1\), which is in strong contrast to \(x^\dagger \notin X_1\).

The following lemma is an immediate consequence of [13, Prop. 2], see also [14, Prop. 3].

Lemma 9.2

Let \(\Vert x^\dag \Vert _p=E\) and \(x_{\alpha }\) be the minimizer of the functional \(T_{-a,\alpha }\) from (9.44) over all \(x \in X\). Given \(\alpha _{*}=\alpha _{*}(\delta )>0\) as defined by formula (9.21) the resulting element \(x_{\alpha _{*}}\) obeys the bounds

$$\begin{aligned} \Vert x_{\alpha _{*}}- x^\dag \Vert _{X}&\le E \delta ^{p/(a + p)}, \end{aligned}$$
(9.45)
$$\begin{aligned} \Vert B^{-a}(x_{\alpha _{*}}- x^\dag )\Vert _{X}&\le E \delta ,\end{aligned}$$
(9.46)
$$\begin{aligned} \Vert Bx_{\alpha _{*}}\Vert _{X}&\le E \delta ^{(p-1)/(a + p)} = E \frac{\delta }{\sqrt{\alpha _{*}}} \end{aligned}$$
(9.47)

and

$$\begin{aligned} \Vert x_{\alpha _{*}}- x^\dag \Vert _{p} \le E. \end{aligned}$$

Due to (9.45) we have \(\Vert x_{\alpha _{*}}-x^\dag \Vert _X \rightarrow 0\) as \(\delta \rightarrow 0\). Hence by Assumption 9.4, in particular because \(x^\dagger \) is an interior point of \(\mathcal {D}(F)\), for sufficiently small \(\delta >0\) the element \(x_{\alpha _{*}}\) belongs to \(\mathcal {B}^X_r(x^\dagger )\subset \mathcal {D}(F)\) and moreover with \(x_{\alpha _{*}}\in X_1\) the inequality (9.19) applies for \(x=x_{\alpha _{*}}\) and such small \(\delta \).

Instead of the inequality (9.8), which is missing in case of oversmoothing penalties, we can use here the inequality

$$\begin{aligned} T^{\delta }_{\alpha _{*}}(x_{\alpha _*}^\delta )\le T^{\delta }_{\alpha _{*}}(x_{\alpha _{*}}). \end{aligned}$$
(9.48)

as minimizing property for the Tikhonov functional. Using (9.48) it is enough to bound \(T^{\delta }_{\alpha _{*}}(x_{\alpha _{*}})\) by \(\overline{C}^2 \delta ^2\) with

$$\begin{aligned} \overline{C}:= \left( (\overline{K} E +1)^{2}+ E^{2}\right) ^{1/2} \end{aligned}$$
(9.49)

in order to obtain the estimates

$$\begin{aligned} \Vert F(x_{\alpha _{*}}^\delta ) - y^\delta \Vert _{Y} \le \overline{C} \delta \end{aligned}$$
(9.50)

and

$$\begin{aligned} \Vert Bx_{\alpha _{*}}^\delta \Vert _{X} \le \overline{C} \frac{\delta }{\sqrt{\alpha _{*}}}. \end{aligned}$$
(9.51)

Since the inequality (9.19) applies for \(x=x_{\alpha _{*}}\) and sufficiently small \(\delta >0\), we can estimate for such \(\delta \) as follows:

$$\begin{aligned} T^{\delta }_{\alpha _{*}}(x_{\alpha _{*}})&\le \left( \Vert F(x_{\alpha _{*}}) - F(x^\dag )\Vert _Y + \Vert F(x^\dag ) - y^\delta \Vert _{Y}\right) ^2 + \alpha _{*}\Vert Bx_{\alpha _{*}}\Vert _{X}^{2}\\&\le \left( \overline{K} \Vert x_{\alpha _{*}}- x^\dag \Vert _{-a} + \delta \right) ^{2} + E^{2} \alpha _{*}\delta ^{2(p-1)/(a + p)}\\&\le \left( \overline{K} E\delta + \delta \right) ^{2} + E^{2}\delta ^{2} \\&= \left( (\overline{K} E +1)^{2} + E^{2}\right) \delta ^{2}. \end{aligned}$$

This ensures the estimates (9.50) and (9.51). Based on this we are going now to show that an inequality (9.42) is valid for some \(K>0\). Here, we use the inequality (9.18) of Assumption 9.4, which applies for \(x=x_{\alpha _{*}}^\delta \), and we find

$$\begin{aligned} \Vert x_{\alpha _{*}}^\delta - x^\dag \Vert _{-a}&\le \frac{1}{\underline{K}} \Vert F(x_{\alpha _{*}}^\delta ) - F(x^\dag )\Vert _{Y}\\&\le \frac{1}{\underline{K}} \left( \Vert F(x_{\alpha _{*}}^\delta ) -y^\delta \Vert _{Y} + \Vert F(x^\dag ) - y^\delta \Vert _{Y}\right) \\&\le \frac{1}{\underline{K}} \left( \overline{C} \delta + \delta \right) = \frac{1}{\underline{K}} \left( \overline{C} +1 \right) \delta =K \delta , \end{aligned}$$

where \(\overline{C}\) is the constant from (9.49) and we derive \(K:=\frac{1}{\underline{K}} \left( \overline{C} +1 \right) \).

Secondly, we still have to show the existence of a constant \(\tilde{E}>0\) such that the inequality (9.43) holds. By using the triangle inequality in combination with (9.51) and (9.47) we find that

$$ \Vert B(x_{\alpha _{*}}^\delta - x_{\alpha _{*}})\Vert _{X} \le \Vert Bx_{\alpha _{*}}^\delta \Vert _{X} +\Vert Bx_{\alpha _{*}}\Vert _{X} \le (\overline{C}+E) \frac{\delta }{\sqrt{\alpha _{*}}}. $$

Again, we use the interpolation inequality and can estimate further as

$$ \Vert x_{\alpha _{*}}^\delta - x_{\alpha _{*}}\Vert _{p} \le \Vert x_{\alpha _{*}}^\delta - x_{\alpha _{*}}\Vert _{1}^{\frac{a + p}{a + 1}} \Vert x_{\alpha _{*}}^\delta - x_{\alpha _{*}}\Vert _{-a} ^{\frac{1 - p}{a + 1}} $$
$$ \le \left( (\overline{C}+E) \frac{\delta }{\sqrt{\alpha _{*}}}\right) ^{\frac{a + p}{a + 1}}\left( \Vert x_{\alpha _{*}}^\delta - x^\dag \Vert _{-a}+\Vert x^\dag - x_{\alpha _{*}}\Vert _{-a} \right) ^{\frac{1 - p}{a + 1}} $$
$$ \le \left( (\overline{C}+E) \frac{\delta }{\sqrt{\alpha _{*}}}\right) ^{\frac{a + p}{a + 1}}\left( (K+E)\delta \right) ^{\frac{1 - p}{a + 1}} $$
$$ \left( (\overline{C}+E)\delta ^{(p-1)/(a + p)} \right) ^{\frac{a + p}{a + 1}}\left( (K+E)\delta \right) ^{\frac{1 - p}{a + 1}}=:\bar{E}. $$

Finally, we have now

$$ \Vert x_{\alpha _{*}}^\delta - x^\dag \Vert _{p} \le \Vert x_{\alpha _{*}}^\delta - x_{\alpha _{*}}\Vert _{p} +\Vert x_{\alpha _{*}}- x^\dag \Vert _{p} \le \bar{E}+E =:\tilde{E}. $$

This shows (9.43) and thus completes the proof of Proposition 9.4.    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gerth, D., Hofmann, B., Hofmann, C. (2020). Case Studies and a Pitfall for Nonlinear Variational Regularization Under Conditional Stability. In: Cheng, J., Lu, S., Yamamoto, M. (eds) Inverse Problems and Related Topics. ICIP2 2018. Springer Proceedings in Mathematics & Statistics, vol 310. Springer, Singapore. https://doi.org/10.1007/978-981-15-1592-7_9

Download citation

Publish with us

Policies and ethics