Skip to main content

Types of Nanozymes: Materials and Activities

  • Chapter
  • First Online:
Nanozymology

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Since the pioneering work focused on the “nanozyme” demonstrated for the first time that nanomaterials exert enzyme-like activity in 2007, more than 40 types of nanozymes have subsequently been reported. This chapter will introduce different nanomaterials with enzymatic activity including the peroxidase activity of nano Fe3O4, Co3O4, Cu2O, MnFe2O4, FeS, CeO2, BiFeO3, CoFe2O4, CdS, FeSe, FeTe, ZnFe2O4, graphene oxide, fullerene, and carbon nanotubes; oxidase activity of nano Au, Pt, Fe3O4, CoFe2O4, BiFeO3, ZnFe2O4, MnO2, and CuO; haloperoxidase activity of nano V2O5; and superoxide dismutase activity of nanoceria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABTS:

2, 2′-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)

BSA:

Bovine serum albumin

C-Dots:

Carbon nanodots

CNTs:

Carbon nanotubes

CTAB:

Cetyltrimethylammonium bromide

DBA:

Diaminobenzidine

dsDNA:

Double-strand DNA

ELISA:

Enzyme-linked immunosorbent assay

EPR:

Electron paramagnetic resonance

GOx:

Glucose oxidase

GQDs:

Graphene quantum dots

HRP:

Horseradish peroxidase

LDH:

Layered double hydroxide

MNPs:

Magnetic nanoparticles

MRI:

Magnetic resonance imaging

MWNTs:

Multi-walled carbon nanotubes

NPs:

Nanoparticles

OPD:

O-phenylenediamine

PCR:

Polymerase chain reaction

PLGA:

Poly lactic-co-glycolic acid

pNPP:

p-Nitrophenol phosphate

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SPIO:

Superparamagnetic iron oxide

ssDNA:

Single-strand DNA

SWNTs:

Single-walled carbon nanotubes

TMB:

Tetramethylbenzidine

UV:

Under voltage

UV-Vis:

Ultraviolet visible

V-HPO:

Vanadium-dependent haloperoxidase

References

  1. Gao L, Yan X (2016) Nanozymes: an emerging field bridging nanotechnology and biology. Sci China Life Sci 59(4):400–402

    Google Scholar 

  2. Walters DE (2006) Artificial enzymes. In: Breslow R (ed). Wiley-VCH Verlag, Weinheim, Germany, xii+181, pp 17.5 × 25 cm (2005). ISBN 3-527-31165-3. $99.95; J Med Chem 49(8):2668–2668

    Google Scholar 

  3. Breslow R, Overman LE (1970) An “artificial enzyme” combining a metal catalytic group and a hydrophobic binding cavity. J Am Chem Soc 92(4):1075–1077

    CAS  Google Scholar 

  4. Pollack RM (2009) From enzyme models to model enzymes. J Am Chem Soc 11(4):581–582

    Google Scholar 

  5. Liang M, Yan X (2019) Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. https://doi.org/10.1021/acs.accounts.9b00140

    Article  Google Scholar 

  6. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060

    CAS  Google Scholar 

  7. Walkey C, Das S, Seal S, Erlichman J, Heckman K, Ghibelli L, Traversa E, McGinnis JF, Self WT (2015) Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ Sci Nano 2(1):33–53

    CAS  Google Scholar 

  8. Wason MS, Zhao J (2013) Cerium oxide nanoparticles: potential applications for cancer and other diseases. Am J Trans Res 5(2):126–131

    CAS  Google Scholar 

  9. Karakoti A, Singh S, Dowding JM, Seal S, Self WT (2010) Redox-active radical scavenging nanomaterials. Chem Soc Rev 39(11):4422–4432

    CAS  Google Scholar 

  10. Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3(4):1411–1420

    CAS  Google Scholar 

  11. Kuciel R, Mazurkiewicz A (2004). Formation and detoxification of reactive oxygen species. Biochem Mol Biol Educ. A bimonthly publication of the International Union of Biochemistry and Molecular Biology 32(3):183–186

    Google Scholar 

  12. Korsvik C, Patil S, Seal S, Self WT (2007) Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun 10:1056–1058

    Google Scholar 

  13. Karakoti AS, Singh S, Kumar A, Malinska M, Kuchibhatla SVNT, Wozniak K, Self WT, Seal S (2009) PEGylated nanoceria as radical scavenger with tunable redox chemistry. J Am Chem Soc 131(40):14144–14145

    CAS  Google Scholar 

  14. Singh R, Singh S (2015) Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles. Colloid Surf B 132:78–84

    CAS  Google Scholar 

  15. Singh S, Dosani T, Karakoti AS, Kumar A, Seal S, Self WT (2011) A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 32(28):6745–6753

    CAS  Google Scholar 

  16. Kumar A, Das S, Munusamy P, Self W, Baer DR, Sayle DC, Seal S (2014) Behavior of nanoceria in biologically-relevant environments. Environ Sci Nano 1(6):516–532

    CAS  Google Scholar 

  17. Grafe C, Weidner A, von der Luhe M, Bergemann C, Schacher FH, Clement JH, Dutz S (2016) Intentional formation of a protein corona on nanoparticles: serum concentration affects protein corona mass, surface charge, and nanoparticle-cell interaction. Int J Biochem Cell B 75:196–202

    Google Scholar 

  18. Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM (2009) Anti-inflammatory properties of cerium oxide nanoparticles. Small 5(24):2848–2856

    CAS  Google Scholar 

  19. Celardo I, De Nicola M, Mandoli C, Pedersen JZ, Traversa E, Ghibelli L (2011) Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano 5(6):4537–4549

    CAS  Google Scholar 

  20. Liu XY, Wei W, Yuan Q, Zhang X, Li N, Du YG, Ma GH, Yan CH, Ma D (2012) Apoferritin-CeO2 nano-truffle that has excellent artificial redox enzyme activity. Chem Commun 48(26):3155–3157

    CAS  Google Scholar 

  21. Mandoli C, Pagliari F, Pagliari S, Forte G, Di Nardo P, Licoccia S, Traversa E (2010) Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine. Adv Func Mater 20(10):1617–1624

    CAS  Google Scholar 

  22. Chen JP, Patil S, Seal S, McGinnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1(2):142–150

    CAS  Google Scholar 

  23. Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ (2007) Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28(10):1918–1925

    CAS  Google Scholar 

  24. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JE, Seal S, Self WT (2010) Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun 46(16):2736–2738

    CAS  Google Scholar 

  25. Robinson JM, Karnovsky MJ (1983) Ultrastructural-localization of several phosphatases with cerium. J Histochem Cytochem 31(10):1197–1208

    CAS  Google Scholar 

  26. Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Edit 48(13):2308–2312

    CAS  Google Scholar 

  27. van Bloois E, Pazmino DET, Winter RT, Fraaije MW (2010) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biot 86(5):1419–1430

    Google Scholar 

  28. He WW, Wamer W, Xia QS, Yin JJ, Fu PP (2014) Enzyme-like activity of nanomaterials. J Environ Sci Heal C 32(2):186–211

    CAS  Google Scholar 

  29. Heckert EG, Seal S, Self WT (2008) Fenton-like reaction catalyzed by the rare earth inner transition metal cerium. Environ Sci Technol 42(13):5014–5019

    CAS  Google Scholar 

  30. Asati A, Kaittanis C, Santra S, Perez JM (2011) pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH. Anal Chem 83(7):2547–2553

    CAS  Google Scholar 

  31. Celardo I, Traversa E, Ghibelli L (2011) Cerium oxide nanoparticles: a promise for applications in therapy. J Exp Ther Oncol 9(1):47–51

    CAS  Google Scholar 

  32. Kuchma MH, Komanski CB, Colon J, Teblum A, Masunov AE, Alvarado B, Babu S, Seal S, Summy J, Baker CH (2010) Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomed-Nanotechnol 6(6):738–744

    CAS  Google Scholar 

  33. Gao L, Fan K, Yan X (2017) Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics 7(13):3207–3227

    CAS  Google Scholar 

  34. Ho D, Sun XL, Sun SH (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44(10):875–882

    CAS  Google Scholar 

  35. Lacroix LM, Ho D, Sun SH (2010) Magnetic nanoparticles as both imaging probes and therapeutic agents. Curr Top Med Chem 10(12):1184–1197

    CAS  Google Scholar 

  36. Xie J, Chen K, Lee HY, Xu CJ, Hsu AR, Peng S, Chen X Y, Sun SH (2008). Ultrasmall c(RGDyK)-coated Fe(3)O(4) nanoparticles and their specific targeting to integrin alpha(v)beta(3)-rich tumor cells. J Am Chem Soc 130(24):7542–7543

    Google Scholar 

  37. Zhu L, Zhou ZY, Mao H, Yang LL (2017) Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomed UK 12(1):73–87

    CAS  Google Scholar 

  38. Anselmo AC, Mitragotri S (2015) A review of clinical translation of inorganic nanoparticles. AAPS J 17(5):1041–1054

    CAS  Google Scholar 

  39. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    CAS  Google Scholar 

  40. Jiang B, Duan D, Gao L, Zhou M, Fan K, Tang Y, Xi J, Bi Y, Tong Z, Gao GF, Xie N, Tang A, Nie G, Liang M, Yan X (2018) Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc 13(7):1506–1520

    CAS  Google Scholar 

  41. Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254

    CAS  Google Scholar 

  42. Wu Q, Rong J, Shan Z, Chen H, Yang W (2009) Effects of aqueous-organic solvents on peroxidase mimetic activity of Fe3O4 magnetic nanoparticles. Sheng wu gong cheng xue bao = Chin J Biotechnol 25(12):1976–1982

    Google Scholar 

  43. Zhang ZX, Wang ZJ, Wang XL, Yang XR (2010) Magnetic nanoparticle-linked colorimetric aptasensor for the detection of thrombin. Sensor Actuat B-Chem 147(2):428–433

    CAS  Google Scholar 

  44. Song YJ, Qu KG, Zhao C, Ren JS, Qu XG (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210

    CAS  Google Scholar 

  45. Chen ZW, Yin JJ, Zhou YT, Zhang Y, Song L, Song MJ, Hu SL, Gu N (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5):4001–4012

    CAS  Google Scholar 

  46. Fan YW, Huang YM (2012) The effective peroxidase-like activity of chitosan-functionalized CoFe2O4 nanoparticles for chemiluminescence sensing of hydrogen peroxide and glucose. Analyst 137(5):1225–1231

    CAS  Google Scholar 

  47. Shi WB, Wang H, Huang YM (2011) Luminol-silver nitrate chemiluminescence enhancement induced by cobalt ferrite nanoparticles. Luminescence 26(6):547–552

    CAS  Google Scholar 

  48. Luo W, Li YS, Yuan J, Zhu LH, Liu ZD, Tang HQ, Liu SS (2010) Ultrasensitive fluorometric determination of hydrogen peroxide and glucose by using multiferroic BiFeO3 nanoparticles as a catalyst. Talanta 81(3):901–907

    CAS  Google Scholar 

  49. Bhattacharya D, Baksi A, Banerjee I, Ananthakrishnan R, Maiti TK, Pramanik P (2011) Development of phosphonate modified Fe1-x MnxFe2O4 mixed ferrite nanoparticles: novel peroxidase mimetics in enzyme linked immunosorbent assay. Talanta 86:337–348

    CAS  Google Scholar 

  50. Ju LL, Chen ZY, Fang L, Dong W, Zheng FG, Shen MR (2011) Sol-Gel synthesis and photo-fenton-like catalytic activity of EuFeO3 nanoparticles. J Am Ceram Soc 94(10):3418–3424

    CAS  Google Scholar 

  51. Wang K, Xu JJ, Sun DC, Wei H, Xia XH (2005) Selective glucose detection based on the concept of electrochemical depletion of electroactive species in diffusion layer. Biosens Bioelectron 20(7):1366–1372

    CAS  Google Scholar 

  52. Park KS, Kim MI, Cho DY, Park HG (2011) Label-free colorimetric detection of nucleic acids based on target-induced shielding against the peroxidase-mimicking activity of magnetic nanoparticles. Small 7(11):1521–1525

    CAS  Google Scholar 

  53. Cao X, Wang N (2011) A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 136(20):4241–4246

    CAS  Google Scholar 

  54. Mu JS, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48(19):2540–2542

    CAS  Google Scholar 

  55. Liang H, Lin FF, Zhang ZJ, Liu BW, Jiang SH, Yuan QP, Liu JW (2017) Multicopper laccase mimicking nanozymes with nucleotides as ligands. Acs Appl Mater Inter 9(2):1352–1360

    CAS  Google Scholar 

  56. Yin JF, Cao HQ, Lu YX (2012) Self-assembly into magnetic Co3O4 complex nanostructures as peroxidase. J Mater Chem 22(2):527–534

    CAS  Google Scholar 

  57. Chen W, Chen J, Liu AL, Wang LM, Li GW, Lin XH (2011) Peroxidase-like activity of cupric oxide nanoparticle. Chemcatchem 3(7):1151–1154

    CAS  Google Scholar 

  58. Chen W, Chen J, Feng YB, Hong L, Chen QY, Wu LF, Lin XH, Xia XH (2012) Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst 137(7):1706–1712

    CAS  Google Scholar 

  59. Rahimi-Rad MH, Alizadeh E, Samarei R (2011) Aquatic leech as a rare cause of respiratory distress and hemoptysis. Pneumologia 60(2):85–86

    Google Scholar 

  60. Huang YY, Liu CQ, Pu F, Liu Z, Ren JS, Qu XG (2017) A GO-Se nanocomposite as an antioxidant nanozyme for cytoprotection. Chem Commun 53(21):3082–3085

    CAS  Google Scholar 

  61. Nagvenkar AP, Gedanken A (2016) Cu0.89Zn0.11O, a new peroxidase-mimicking nanozyme with high sensitivity for glucose and antioxidant detection. Acs Appl Mater Inter, 8(34):22301–22308

    Google Scholar 

  62. Gao LZ, Koo H (2017) Do catalytic nanoparticles offer an improved therapeutic strategy to combat dental biofilms? Nanomed UK 12(4):275–279

    CAS  Google Scholar 

  63. Xu Y, Wu XQ, Shen JS, Zhang HW (2015) Highly selective and sensitive recognition of histidine based on the oxidase-like activity of Cu2+ ions. Rsc Adv 5(112):92114–92120

    CAS  Google Scholar 

  64. Liu X, Wang Q, Zhao HH, Zhang LC, Su YY, Lv Y (2012) BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 137(19):4552–4558

    CAS  Google Scholar 

  65. Wan Y, Qi P, Zhang D, Wu JJ, Wang Y (2012) Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens Bioelectron 33(1):69–74

    CAS  Google Scholar 

  66. Gao WY, Liu ZY, Qi LM, Lai JP, Kitte SA, Xu GB (2016) Ultrasensitive glutathione detection based on lucigenin cathodic electrochemiluminescence in the presence of MnO2 nanosheets. Anal Chem 88(15):7654–7659

    CAS  Google Scholar 

  67. Andre R, Natalio F, Humanes M, Leppin J, Heinze K, Wever R, Schroder HC, Muller WEG, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Func Mater 21(3):501–509

    CAS  Google Scholar 

  68. Natalio F, Andre R, Hartog AF, Stoll B, Jochum KP, Wever R, Tremel W (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7(8):530–535

    CAS  Google Scholar 

  69. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Edit 45(47):7896–7936

    Google Scholar 

  70. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0 ℃. Chem Lett 2:405–408

    Google Scholar 

  71. Comotti M, Della Pina C, Matarrese R, Rossi M (2004) The catalytic activity of “Naked” gold particles. Angew Chem Int Edit 43(43):5812–5815

    CAS  Google Scholar 

  72. Beltrame P, Comotti M, Della Pina C, Rossi M (2006). Aerobic oxidation of glucose II. Catalysis by colloidal gold. Appl Catal A Gen 297(1):1–7

    Google Scholar 

  73. Beltrame P, Comotti M, Della Pina C, Rossi M (2004) Aerobic oxidation of glucose I. Enzymatic catalysis. J Catal 228(2):282–287

    CAS  Google Scholar 

  74. Luo WJ, Zhu CF, Su S, Li D, He Y, Huang Q, Fan CH (2010) Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano 4(12):7451–7458

    CAS  Google Scholar 

  75. Zheng XX, Liu Q, Jing C, Li Y, Li D, Luo WJ, Wen YQ, He Y, Huang Q, Long YT, Fan CH (2011) Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew Chem Int Edit 50(50):11994–11998

    CAS  Google Scholar 

  76. Zou HY, Yang T, Lan J, Huang CZ (2017) Use of the peroxidase mimetic activity of erythrocyte-like Cu1.8S nanoparticles in the colorimetric determination of glutathione. Anal Methods UK 9(5):841–846

    Google Scholar 

  77. Jv Y, Li BX, Cao R (2010) Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46(42):8017–8019

    Google Scholar 

  78. Long YJ, Li YF, Liu Y, Zheng JJ, Tang J, Huang CZ (2011) Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles. Chem Commun 47(43):11939–11941

    CAS  Google Scholar 

  79. Chen YP, Xianyu YL, Jiang XY (2017) Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc Chem Res 50(2):310–319

    CAS  Google Scholar 

  80. Wang XX, Wu Q, Shan Z, Huang QM (2011) BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens Bioelectron 26(8):3614–3619

    CAS  Google Scholar 

  81. Zhang LB, Laug L, Munchgesang W, Pippel E, Gosele U, Brandsch M, Knez M (2010) Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles. Nano Lett 10(1):219–223

    Google Scholar 

  82. Clark A, Zhu AP, Sun K, Petty HR (2011) Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis. J Nanopart Res 13(10):5547–5555

    CAS  Google Scholar 

  83. Fan J, Yin JJ, Ning B, Wu XC, Hu Y, Ferrari M, Anderson GJ, Wei JY, Zhao YL, Nie GJ (2011) Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials 32(6):1611–1618

    CAS  Google Scholar 

  84. Ma M, Zhang Y, Gu N (2011) Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloid Surface A 373(1–3):6–10

    CAS  Google Scholar 

  85. Lien CW, Huang CC, Chang HT (2012) Peroxidase-mimic bismuth-gold nanoparticles for determining the activity of thrombin and drug screening. Chem Commun 48(64):7952–7954

    CAS  Google Scholar 

  86. He WW, Liu Y, Yuan JS, Yin JJ, Wu XC, Hu XN, Zhang K, Liu JB, Chen CY, Ji YL, Guo YT (2011) Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32(4):1139–1147

    CAS  Google Scholar 

  87. Liu JB, Hu XN, Hou S, Wen T, Liu WQ, Zhu X, Wu XC (2011) Screening of inhibitors for oxidase mimics of Au@Pt nanorods by catalytic oxidation of OPD. Chem Commun 47(39):10981–10983

    CAS  Google Scholar 

  88. Zhang K, Hu XN, Liu JB, Yin JJ, Hou SA, Wen T, He WW, Ji YL, Guo YT, Wang Q, Wu XC (2011) Formation of PdPt alloy nanodots on gold nanorods: tuning oxidase-like activities via composition. Langmuir 27(6):2796–2803

    CAS  Google Scholar 

  89. Liu JB, Hu XN, Hou S, Wen T, Liu WQ, Zhu X, Yin JJ, Wu XC (2012) Au@Pt core/shell nanorods with peroxidase- and ascorbate oxidase-like activities for improved detection of glucose. Sensor Actuat B-Chem 166:708–714

    Google Scholar 

  90. He WW, Wu XC, Liu JB, Hu XN, Zhang K, Hou SA, Zhou WY, Xie SS (2010) Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem Mater 22(9):2988–2994

    CAS  Google Scholar 

  91. Garg B, Bisht T (2016) Carbon nanodots as peroxidase nanozymes for biosensing. Molecules 21(12)

    Google Scholar 

  92. Guo SJ, Dong SJ (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40(5):2644–2672

    CAS  Google Scholar 

  93. Song YJ, Wang XH, Zhao C, Qu KG, Ren JS, Qu XG (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem-Eur J 16(12):3617–3621

    CAS  Google Scholar 

  94. Garg B, Bisht T, Ling YC (2014) Graphene-based nanomaterials as heterogeneous acid catalysts: a comprehensive perspective. Molecules 19(9):14582–14614

    Google Scholar 

  95. Garg B, Ling YC (2013) Versatilities of graphene-based catalysts in organic transformations. Green Mater 1(1):47–61

    CAS  Google Scholar 

  96. Garg B, Bisht T, Ling YC (2014) Sulfonated graphene as highly efficient and reusable acid carbocatalyst for the synthesis of ester plasticizers. Rsc Adv 4(100):57297–57307

    CAS  Google Scholar 

  97. Garg B, Sung CH, Ling YC (2015) Graphene-based nanomaterials as molecular imaging agents. Wires Nanomed Nanobi 7(6):737–758

    CAS  Google Scholar 

  98. Garg B, Bisht T, Ling YC (2015) Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: an overview. Molecules 20(8):14155–14190

    CAS  Google Scholar 

  99. Garg B, Bisht T, Ling YC (2016) Graphene-based nanomaterials: versatile catalysts for carbon-carbon bond forming reactions. Curr Org Chem 20(15):1547–1566

    CAS  Google Scholar 

  100. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) C-60—Buckminsterfullerene. Nature 318(6042):162–163

    CAS  Google Scholar 

  101. Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF (1991) Radical reactions of C60. Science 254(5035):1183–1185

    CAS  Google Scholar 

  102. Dugan LL, Gabrielsen JK, Yu SP, Lin TS, Choi DW (1996) Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 3(2):129–135

    CAS  Google Scholar 

  103. Ali SS, Hardt JI, Quick KL, Kim-Han JS, Erlanger BF, Huang TT, Epstein CJ, Dugan LL (2004) A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic Biol Med 37(8):1191–1202

    CAS  Google Scholar 

  104. Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR, Shen CK, Luh TY, Choi DW, Lin TS (1997) Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci USA 94(17):9434–9439

    CAS  Google Scholar 

  105. Dugan LL, Lovett EG, Quick KL, Lotharius J, Lin TT, O’Malley KL (2001) Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord 7(3):243–246

    Google Scholar 

  106. Ali SS, Hardt JI, Dugan LL (2008) SOD Activity of carboxyfullerenes predicts their neuroprotective efficacy: a structure-activity study. Nanomed-Nanotechnol 4(4):283–294

    CAS  Google Scholar 

  107. Belgorodsky B, Fadeev L, Ittah V, Benyamini H, Zelner S, Huppert D, Kotlyar AB, Gozin M (2005) Formation and characterization of stable human serum albumin-tris-malonic acid [C60]fullerene complex. Bioconjug Chem 16(5):1058–1062

    CAS  Google Scholar 

  108. Quick KL, Ali SS, Arch R, Xiong C, Wozniak D, Dugan LL (2008) A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol Aging 29(1):117–128

    CAS  Google Scholar 

  109. Cui RJ, Han ZD, Zhu JJ (2011) Helical carbon nanotubes: intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing. Chem-Eur J 17(34):9377–9384

    CAS  Google Scholar 

  110. Guo YJ, Deng L, Li J, Guo SJ, Wang EK, Dong SJ (2011) Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 5(2):1282–1290

    CAS  Google Scholar 

  111. Guo YJ, Li J, Dong SJ (2011) Hemin functionalized graphene nanosheets-based dual biosensor platforms for hydrogen peroxide and glucose. Sensor Actuat B-Chem 160(1):295–300

    CAS  Google Scholar 

  112. Liu M, Zhao HM, Chen S, Yu HT, Quan X (2012) Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano 6(4):3142–3151

    CAS  Google Scholar 

  113. Ye YP, Kong T, Yu XF, Wu YK, Zhang K, Wang XP (2012) Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta 89:417–421

    CAS  Google Scholar 

  114. Liu M, Zhao HM, Chen S, Yu HT, Quan X (2012) Stimuli-responsive peroxidase mimicking at a smart graphene interface. Chem Commun 48(56):7055–7057

    CAS  Google Scholar 

  115. Liu S, Tian JQ, Wang L, Luo YL, Sun XP (2012) A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. Rsc Adv 2(2):411–413

    CAS  Google Scholar 

  116. Shi WB, Wang QL, Long YJ, Cheng ZL, Chen SH, Zheng HZ, Huang YM (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47(23):6695–6697

    CAS  Google Scholar 

  117. Wang XH, Qu KG, Xu BL, Ren JS, Qu XG (2011) Multicolor luminescent carbon nanoparticles: synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Res 4(9):908–920

    CAS  Google Scholar 

  118. Song YJ, Qu KG, Xu C, Ren JS, Qu XG (2010) Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes. Chem Commun 46(35):6572–6574

    CAS  Google Scholar 

  119. Dai ZH, Liu SH, Bao JC, Jui HX (2009) Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing. Chem-Eur J 15(17):4321–4326

    CAS  Google Scholar 

  120. Dutta AK, Maji SK, Srivastava DN, Mondal A, Biswas P, Paul P, Adhikary B (2012) Synthesis of FeS and FeSe nanoparticles from a single source precursor: a study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2. Acs Appl Mater Inter 4(4):1919–1927

    CAS  Google Scholar 

  121. Maji SK, Dutta AK, Biswas P, Srivastava DN, Paul P, Mondal A, Adhikary B (2012) Synthesis and characterization of FeS nanoparticles obtained from a dithiocarboxylate precursor complex and their photocatalytic, electrocatalytic and biomimic peroxidase behavior. Appl Catal A Gen 419:170–177

    Google Scholar 

  122. Roy P, Lin ZH, Liang CT, Chang HT (2012) Synthesis of enzyme mimics of iron telluride nanorods for the detection of glucose. Chem Commun 48(34):4079–4081

    CAS  Google Scholar 

  123. Peng C, Jiang BW, Liu Q, Guo Z, Xu ZJ, Huang Q, Xu HJ, Tai RZ, Fan CH (2011) Graphene-templated formation of two-dimensional lepidocrocite nanostructures for high-efficiency catalytic degradation of phenols. Energ Environ Sci 4(6):2035–2040

    CAS  Google Scholar 

  124. Liu S, Tian JQ, Wang L, Luo YL, Chang GH, Sun XP (2011) Iron-substituted SBA-15 microparticles: a peroxidase-like catalyst for H2O2 detection. Analyst 136(23):4894–4897

    CAS  Google Scholar 

  125. Malvi B, Panda C, Dhar BB, Sen Gupta S (2012) One pot glucose detection by [Fe-III(biuret-amide)] immobilized on mesoporous silica nanoparticles: an efficient HRP mimic. Chem Commun 48(43):5289–5291

    CAS  Google Scholar 

  126. Tian JQ, Liu S, Luo YL, Sun XP (2012) Fe(III)-based coordination polymer nanoparticles: peroxidase-like catalytic activity and their application to hydrogen peroxide and glucose detection. Catal Sci Technol 2(2):432–436

    CAS  Google Scholar 

  127. Wang W, Jiang XP, Chen KZ (2012) Iron phosphate microflowers as peroxidase mimic and superoxide dismutase mimic for biocatalysis and biosensing. Chem Commun 48(58):7289–7291

    CAS  Google Scholar 

  128. Wang YL, Chen SH, Ni F, Gao F, Li MG (2009) Peroxidase-like layered double hydroxide nanoflakes for electrocatalytic reduction of H2O2. Electroanal 21(19):2125–2132

    CAS  Google Scholar 

  129. Cui L, Yin H, Dong J, Fan H, Liu T, Ju P, Ai S (2011) A mimic peroxidase biosensor based on calcined layered double hydroxide for detection of H2O2. Biosens Bioelectron 26(7):3278–3283

    CAS  Google Scholar 

  130. Zhang YW, Tian JQ, Liu S, Wang L, Qin XY, Lu WB, Chang GH, Luo YL, Asiri AM, Al-Youbi AO, Sun XP (2012) Novel application of CoFe layered double hydroxide nanoplates for colorimetric detection of H2O2 and glucose. Analyst 137(6):1325–1328

    CAS  Google Scholar 

  131. Liu S, Wang L, Zhai JF, Luo YL, Sun XP (2011) Carboxyl functionalized mesoporous polymer: a novel peroxidase-like catalyst for H2O2 detection. Anal Methods UK 3(7):1475–1477

    CAS  Google Scholar 

  132. Liu S, Tian JQ, Wang L, Zhang YW, Luo YL, Li HY, Asiri AM, Al-Youbi AO, Sun XP (2012) Fast and sensitive colorimetric detection of H2O2 and glucose: a strategy based on polyoxometalate clusters. ChemPlusChem 77(7):541–544

    CAS  Google Scholar 

  133. He WW, Jia HM, Li XX, Lei Y, Li J, Zhao HX, Mi LW, Zhang LZ, Zheng Z (2012) Understanding the formation of CuS concave superstructures with peroxidase-like activity. Nanoscale 4(11):3501–3506

    CAS  Google Scholar 

  134. Singh A, Patra S, Lee JA, Park KH, Yang H (2011) An artificial enzyme-based assay: DNA detection using a peroxidase-like copper-creatinine complex. Biosens Bioelectron 26(12):4798–4803

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0205501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taotao Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Liang, M., Wei, T. (2020). Types of Nanozymes: Materials and Activities. In: Yan, X. (eds) Nanozymology. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1490-6_3

Download citation

Publish with us

Policies and ethics