Skip to main content

Nanozymes for Environmental Monitoring and Treatment

  • Chapter
  • First Online:
Nanozymology

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The development of highly efficient, robust and low-cost methods for the detection and degradation of contaminants in wastewater and atmospheric environment is very important for our environment and human health. Nanozymes have shown great potential in environment analysis and treatment owing to their low cost, high stability, multiple catalytic activities, and low environmental impact. Particularly, by connecting the unique physicochemical properties of nanomaterials and enzyme-like catalytic activity of nanozymes, a variety of nanozymes-based environmental monitoring and treatment technologies have been developed. Currently, a number of organic chemical pollutants, such as phenols, rhodamine B, aniline, methylene blue and xylenol orange, etc., have been successfully removed with high removal efficiency by employing nanozymes. Furthermore, by incorporating nanozymes into monitoring sensor, the detection limit for organic and metal ion pollutants have been reduced to the low nanomolar concentration range, which is environmentally more relevant than the micromolar or millimolar concentration generally offered by the traditional detection methods. This chapter reviewed the recent progress in the field of nanozymes-based technologies and approaches for environmental monitoring and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABTS:

2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt

AChE:

Acetylcholinesterase

Ag+:

Silver ions

CHO:

Choline oxidase

CoOxH-GO:

Cobalt hydroxide/oxide-modified graphene oxide

γ-FeOOH:

Lepidocrocite

GNPs:

Gold nanoparticles

GQDs/Fe3O4:

Graphene quantum dot and Fe3O4

Hg2+:

Mercury ion

MNPs:

Magnetic nanoparticles

NPs:

Nanoparticles

OPs:

Organophosphate compounds

References

  1. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Google Scholar 

  2. Shin HY, Park TJ, Kim MI (2015) Recent research trends and future prospects in nanozymes. J Nanomater 1:1–11

    Google Scholar 

  3. Ragg R, Tahir MN, Tremel W (2016) Solids of bio: inorganic nanoparticles as enzyme mimics. Eur J Inorg Chem 13–14:1906–1915

    Google Scholar 

  4. Duan D, Fan K, Zhang D, Tan S, Liang M, Liu Y, Zhang J, Zhang P, Liu W, Qiu X, Kobinger GP, Gao GF, Yan X (2015) Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 74:134–141

    CAS  Google Scholar 

  5. Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254

    CAS  Google Scholar 

  6. Liang M, Fan K, Pan Y, Jiang H, Wang F, Yang D, Lu D, Feng J, Zhao J, Yang L, Yan X (2013) Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem 85(1):308–812

    CAS  Google Scholar 

  7. Zhang S, Li H, Wang Z, Liu J, Zhang H, Wang B, Yang Z (2015) A strongly coupled Au/Fe3O4/GO hybrid material with enhanced nanozyme activity for highly sensitive colorimetric detection, and rapid and efficient removal of Hg2+ in aqueous solutions. Nanoscale 7(18):8495–8502

    CAS  Google Scholar 

  8. Li W, Chen B, Zhang H, Sun Y, Wang J, Zhang J, Fu Y (2015) BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosens Bioelectron 66:251–258

    CAS  Google Scholar 

  9. Han KN, Choi JS, Kwon J (2017) Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci Rep 7(1):2806

    Google Scholar 

  10. Fu Y, Zhang H, Dai S, Zhi X, Zhang J, Li W (2015) Glutathione-stabilized palladium nanozyme for colorimetric assay of silver (I) ions. Analyst 140(19):6676–6683

    CAS  Google Scholar 

  11. Liu Y, Ding D, Zhen Y, Guo R (2017) Amino acid-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens Bioelectron 92:140–146

    CAS  Google Scholar 

  12. Liu B, Han X, Liu J (2016) Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2+ detection. Nanoscale 8(28):13620–13626

    CAS  Google Scholar 

  13. Sharma TK, Ramanathan R, Weerathunge P, Mohammadtaheri M, Daima HK, Shukla R, Bansal V (2014) Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection. Chem Commun (Camb) 50(100):15856–15859

    CAS  Google Scholar 

  14. Lien CW, Unnikrishnan B, Harroun SG, Wang CM, Chang JY, Chang HT, Huang CC (2018) Visual detection of cyanide ions by membrane-based nanozyme assay. Biosens Bioelectron 102:510–517

    CAS  Google Scholar 

  15. Singh S, Tripathi P, Kumar N, Nara S (2017) Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens Bioelectron 92:280–286

    CAS  Google Scholar 

  16. Khairy M, Ayoub HA, Banks CE (2018) Non-enzymatic electrochemical platform for parathion pesticide sensing based on nanometer-sized nickel oxide modified screen-printed electrodes. Food Chem 255:104–111

    CAS  Google Scholar 

  17. Weerathunge P, Sharma TK, Ramanathan R, Bansal V (2017) Nanozyme-based environmental monitoring. In: Advanced environmental analysis: applications of nanomaterials, vol 2. The Royal Society of Chemistry, pp 108–132

    Google Scholar 

  18. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093

    CAS  Google Scholar 

  19. Ha E, Basu N, Bose-O’Reilly S, Dórea JG, McSorley E, Sakamoto M, Chan HM (2017) Current progress on understanding the impact of mercury on human health. Environ Res 152:419–433

    CAS  Google Scholar 

  20. Osredkar J, Sustar N (2011) Copper and zinc, biological role and significance of copper/zinc imbalance. J Clinic Toxicol S 3:001

    Google Scholar 

  21. Kim MI, Ye Y, Won BY, Lee J, Park HG (2011) A highly efficient electrochemical biosensing platform by employing conductive nanocomposite entrapping magnetic nanoparticles and oxidase in mesoporous carbon foam. Adv Funct Mater 21(15):2868–2875

    CAS  Google Scholar 

  22. Zhang J, Zhuang J, Gao L, Zhang Y, Gu N, Feng J, Yang D, Zhu J, Yan X (2008) Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 73(9):1524–1528

    CAS  Google Scholar 

  23. Zuo X, Peng C, Huang Q, Song S, Wang L, Li D, Fan C (2009) Design of a carbon nanotube/magnetic nanoparticle-based peroxidase-like nanocomplex and its application for highly efficient catalytic oxidation of phenols. Nano Res 2(8):617–623

    CAS  Google Scholar 

  24. Zhang S, Zhao X, Niu H, Shi Y, Cai Y, Jiang G (2009) Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J Hazard Mater 167(1–3):560–566

    CAS  Google Scholar 

  25. Wang N, Zhu L, Wang D, Wang M, Lin Z, Tang H (2010) Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason Sonochem 17(3):526–533

    CAS  Google Scholar 

  26. Yan J, Lei M, Zhu L, Anjum MN, Zou J, Tang H (2011) Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. J Hazard Mater 186(2–3):1398–1404

    CAS  Google Scholar 

  27. Jiang J, Zou J, Zhu L, Huang L, Jiang H, Zhang Y (2011) Degradation of methylene blue with H2O2 activated by peroxidase-like Fe3O4 magnetic nanoparticles. J Nanosci Nanotechnol 11(6):4793–4799

    CAS  Google Scholar 

  28. Huang R, Fang Z, Yan X, Cheng W (2012) Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition. Chem Eng J 197:242–249

    CAS  Google Scholar 

  29. Xu L, Wang J (2012) Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles. Appl Catal B: Environ 123–124:117–126

    Google Scholar 

  30. Xu L, Wang J (2011) A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J Hazard Mater 186(1):256–264

    CAS  Google Scholar 

  31. Xu L, Wang J (2012) Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ Sci Technol 46(18):10145–10153

    CAS  Google Scholar 

  32. Tian SH, Tu YT, Chen DS, Chen X, Xiong Y (2011) Degradation of Acid Orange II at neutral pH using Fe2(MoO4)3 as a heterogeneous Fenton-like catalyst. Chem Eng J 169(1–3):31–37

    CAS  Google Scholar 

  33. Niu H, Zhang D, Zhang S, Zhang X, Meng Z, Cai Y (2011) Humic acid coated Fe3O4 magnetic nanoparticles as highly efficient Fenton-like catalyst for complete mineralization of sulfathiazole. J Hazard Mater 190(1–3):559–565

    CAS  Google Scholar 

  34. Chun J, Lee H, Lee SH, Hong SW, Lee J, Lee C, Lee J (2012) Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic. Chemosphere 89(10):1230–1237

    CAS  Google Scholar 

  35. Deng J, Wen X, Li J (2016) Fabrication highly dispersed Fe3O4 nanoparticles on carbon nanotubes and its application as a mimetic enzyme to degrade Orange II. Environ Technol 37(17):2214–2221

    CAS  Google Scholar 

  36. Zhang Y, Xu S, Luo Y, Pan S, Ding H, Li G (2011) Synthesis of mesoporous carbon capsules encapsulated with magnetite nanoparticles and their application in wastewater treatment. J Mater Chem 21(11):3664–3671

    CAS  Google Scholar 

  37. Zhu M, Diao G (2011) Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange. J Phys Chem C 115(39):18923–18934

    CAS  Google Scholar 

  38. Luo W, Zhu L, Wang N, Tang H, Cao M, She Y (2010) Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst. Environ Sci Technol 44(5):1786–1791

    CAS  Google Scholar 

  39. Wu X, Zhang Y, Han T, Wu H, Guo S, Zhnag J (2014) Composite of graphene quantum dots and Fe3O4 nanoparticles: peroxidase activity and application in phenolic compound removal. RSC Adv 4(7):3299–3305

    CAS  Google Scholar 

  40. Janoš P, Kuran P, Pilařová V, Trögl J, Šťastný M, Pelant O, Henych J, Bakardjieva S, Životský O, Kormunda M, Mazanec K, Skoumal M (2015) Magnetically separable reactive sorbent based on the CeO2/γ-Fe2O3 composite and its utilization for rapid degradation of the organophosphate pesticide parathion methyl and certain nerve agents. Chem Eng J 262:747–755

    Google Scholar 

  41. Zhi L, Zou W, Chen F, Wang B (2016) 3D MoS2 composition aerogels as chemosensors and adsorbents for colorimetric detection and high-capacity adsorption of Hg2+. ACS Sustain Chem Eng 4(6):3398–3408

    CAS  Google Scholar 

  42. Niu H, Dizhang Meng Z, Cai Y (2012) Fast defluorination and removal of norfloxacin by alginate/Fe@Fe3O4 core/shell structured nanoparticles. J Hazard Mater 227–228:195–203

    Google Scholar 

  43. Peng C, Jiang BW, Liu Q, Guo Z, Xu ZJ, Huang Q, Xu HJ, Tai RZ, Fan CH (2011) Graphene-templated formation of two-dimensional lepidocrocite nanostructures for high-efficiency catalytic degradation of phenols. Energy Environ Sci 4(6):2035–2040

    CAS  Google Scholar 

  44. Chen TM, Xiao J, Yang GW (2016) Cubic boron nitride with an intrinsic peroxidase-like activity. RSC Adv 6(74):70124–70132

    CAS  Google Scholar 

  45. Feng YB, Hong L, Liu AL, Chen WD, Li GW, Chen W, Xia XH (2013) High-efficiency catalytic degradation of phenol based on the peroxidase-like activity of cupric oxide nanoparticles. Int J Environ Sci Te 12(2):653–660

    Google Scholar 

  46. Zhang Z, Hao J, Yang W, Lu B, Ke X, Zhang B, Tang J (2013) Porous Co3O4 nanorods-reduced graphene oxide with intrinsic peroxidase-like activity and catalysis in the degradation of methylene blue. ACS Appl Mater Interfaces 5(9):3809–3815

    CAS  Google Scholar 

  47. Zeb A, Xie X, Yousaf AB, Imran M, Wen T, Wang Z, Guo HL, Jiang YF, Qazi IA, Xu AW (2016) Highly efficient Fenton and enzyme-mimetic activities of mixed-phase VOx nanoflakes. ACS Appl Mater Interfaces 8(44):30126–30132

    CAS  Google Scholar 

  48. Wang N, Zhu L, Wang M, Wang D, Tang H (2009) Sono-enhanced degradation of dye pollutants with the use of H2O2 activated by Fe3O4 magnetic nanoparticles as peroxidase mimetic. Ultrason Sonochem 17(1):78–83

    CAS  Google Scholar 

  49. Cheng R, Li G, Chneg C, Shi L, Zheng X, Ma Z (2015) Catalytic oxidation of 4-chlorophenol with magnetic Fe3O4 nanoparticles: mechanisms and particle transformation. RSC Adv 5(82):66927–66933

    CAS  Google Scholar 

  50. Li L, Ai L, Zhang C, Jiang J (2014) Hierarchical {001}-faceted BiOBr microspheres as a novel biomimetic catalyst: dark catalysis towards colorimetric biosensing and pollutant degradation. Nanoscale 6(9):4627–4634

    CAS  Google Scholar 

  51. Vernekar AA, Das T, Mugesh G (2016) Vacancy-engineered nanoceria: enzyme mimetic hotspots for the degradation of nerve agents. Angew Chem Int Ed Engl 55(4):1412–1416

    CAS  Google Scholar 

  52. Huang Y, Ran X, Lin Y, Ren J, Qu X (2015) Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions. Chem Commun (Camb) 51(21):4386–4389

    CAS  Google Scholar 

  53. Wan D, Li WB, Wang GH, Chen K, Lu LL, Hu Q (2015) Adsorption and heterogeneous degradation of rhodamine B on the surface of magnetic bentonite material. Appl Surf Sci 349:988–996

    CAS  Google Scholar 

  54. He W, Wamer W, Xia Q, Yin JJ, Fu PP (2014) Enzyme-like activity of nanomaterials. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 32(2):186–211

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81722024 and 81571728), the National Key R&D Program of China (2017YFA0205501), the Key Research Program of Frontier Sciences (QYZDY-SSWSMC013), and the Youth Innovation Promotion Association (2014078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minmin Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, J., Liang, M. (2020). Nanozymes for Environmental Monitoring and Treatment. In: Yan, X. (eds) Nanozymology. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1490-6_16

Download citation

Publish with us

Policies and ethics