Skip to main content

Small Area Estimation for Skewed Semicontinuous Spatially Structured Responses

  • Chapter
  • First Online:
Statistical Methods and Applications in Forestry and Environmental Sciences

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

Abstract

When surveys are not originally designed to produce estimates for small geographical areas, some of these domains can be poorly represented in the sample. In such cases, model-based small area estimators can be used to improve the accuracy of the estimates by borrowing information from other sub-populations. Frequently, in surveys related to agriculture, forestry or the environment, we are interested in analyzing continuous variables which are characterized by a strong spatial structure, a skewed distribution and a point mass at zero. In such cases, standard methods for small area estimation, which are based on linear mixed models, can be inefficient. The aim of this chapter is to discuss small area estimation models suggested in literature to handle zero-inflated, skewed, spatially structured data and to present them under the unified approach of generalized two-part random effects models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albert, P., & Shen, J. (2005). Modelling longitudinal semicontinuous emesis volume data with serial correlation in an acupuncture clinical trial. Journal of the Royal Statistical Society Series C, 54, 707–720.

    Article  MathSciNet  Google Scholar 

  • Battese, G., Harter, R., & Fuller, W. (1988). An error component model for prediction of county crop areas using survey and satellite data. Journal of the American Statistical Association, 83, 28–36.

    Article  Google Scholar 

  • Berg, E. and Chandra, H. (2012). Small area prediction for a unit level lognormal model. In Proceedings of the 2012 Federal Committee on Statistical Methodology Research Conference. Washington: DC, USA.

    Google Scholar 

  • Berk, K. N., & Lachenbruch, P. A. (2002). Repeated measures with zeros. Statistical Methods in Medical Research, 11, 303–316.

    Article  Google Scholar 

  • Bocci, C., & Petrucci, A. (2016). Spatial information and geoadditive small area models. In M. Pratesi (Ed.), Analysis of poverty data by small area estimation (pp. 245–259). UK: Wiley.

    Chapter  Google Scholar 

  • Bocci, C., Petrucci, A., & Rocco, E. (2012). Small area methods for agricultural data, a two-part geoadditive model to estimate the agrarian region level means of the grapevines production in tuscany. Journal of the Indian Society of Agricultural Statistics, 66, 135–144.

    MathSciNet  Google Scholar 

  • Bocci, C., & Rocco, E. (2014). Estimates for geographical domains through geoadditive models in presence of incomplete geographical information. Statistical Methods and Applications, 23, 283–305.

    Article  MathSciNet  Google Scholar 

  • Cantoni, E., Flemming, J. M., & Welsh, A. H. (2017). A random-effects hurdle model for predicting bycatch of endangered marine species. The Annals of Applied Statistics, 11, 2178–2199.

    Article  MathSciNet  Google Scholar 

  • Chandra, H., & Chambers, R. (2011). Small area estimation under transformation to linearity. Survey Methodology, 37, 39–51.

    Google Scholar 

  • Chandra, H., & Chambers, R. (2016). Small area estimation for semicontinuous data. Biometrical Journal, 58, 303–319.

    Article  MathSciNet  Google Scholar 

  • Chandra, H., Salvati, N., & Chambers, R. (2018). Small area estimation under a spatially non-linear model. Computational Statistics and Data Analysis, 126, 19–38.

    Article  MathSciNet  Google Scholar 

  • Chandra, H., & Sud, U. C. (2012). Small area estimation for zero-inflated data. Communications in Statistics - Simulation and Computation, 41, 632–643.

    Article  MathSciNet  Google Scholar 

  • Cressie, N. (1993). Statistics for Spatial Data (revised ed.). New York: Wiley.

    MATH  Google Scholar 

  • Datta, G. S., & Ghosh, M. (1991). Bayesian prediction in linear models: applications to small area estimation. The Annals of Statistics, 19, 1748–1770.

    Article  MathSciNet  Google Scholar 

  • Dreassi, E., Petrucci, A., & Rocco, E. (2014). Small area estimation for semicontinuous skewed spatial data: An application to the grape wine production in Tuscany. Biometrical Journal, 56, 141–156.

    Article  MathSciNet  Google Scholar 

  • Eilers, P. H. C., & Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11, 89–121.

    Article  MathSciNet  Google Scholar 

  • Fahrmeir, L., & Lang, S. (2001). Bayesian inference for generalized additive mixed models based on markov random field priors. Journal of the Royal Statistical Society Series C, 50, 201–220.

    Article  MathSciNet  Google Scholar 

  • Fay, R. E., & Herriot, R. A. (1979). Estimation of income from small places: An application of james-stein procedures to census data. Journal of the American Statistical Association, 74, 269–277.

    Article  MathSciNet  Google Scholar 

  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. E. (2002). Geographically weighted regression: The analysis of spatially varying Relationships. Chichester: Wiley.

    MATH  Google Scholar 

  • Gosh, P., & Albert, P. S. (2009). A bayesian analysis for longitudinal semicontinuous data with an application to an acupuncture clinical trial. Computational Statistics and Data Analysis, 53, 699–706.

    Article  MathSciNet  Google Scholar 

  • Hall, D. B. (2000). Zero-inflated poisson and binomial regression with random effects: A case study. Biometrics, 56, 1030–1039.

    Article  MathSciNet  Google Scholar 

  • Hall, P., & Maiti, T. (2006). On parametric bootstrap methods for small area prediction. Journal Royal Statistical Society Series B, 68, 221–238.

    Article  MathSciNet  Google Scholar 

  • Hastie, T., & Tibshirani, R. (1990). Generalized additive models. London: Chapman & Hall.

    MATH  Google Scholar 

  • Jiang, J., Lahiri, P., & Wan, S. (2002). A unified Jackknife theory for empirical best prediction with M-estimation. Annals of Statistics, 30, 1782–1810.

    Article  MathSciNet  Google Scholar 

  • Kammann, E. E., & Wand, M. P. (2003). Geoadditive models. Applied Statistics, 52, 1–18.

    MathSciNet  MATH  Google Scholar 

  • Karlberg, F. (2014). Small area estimation for skewed data in the presence of zeros. Statistics in Transition, 16, 541–562.

    Article  Google Scholar 

  • Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New York: Wiley.

    Book  Google Scholar 

  • Krieg, S., Boonstra, H. J., & Smeets, M. (2016). Small-area estimation with zero-inflated data - a simulation study. Journal of Official Statistics, 32, 963–986.

    Article  Google Scholar 

  • Lambert, D. (1992). Zero-inflated Poisson regression with an application to defects in manufacturing. Technometrics, 34, 1–14.

    Article  Google Scholar 

  • Manteiga, G. W., Lombardìa, M. J., Molina, I., Morales, D., & Santamarìa, L. (2007). Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model. Computational Statistics and Data Analysis, 51, 2720–2733.

    Article  MathSciNet  Google Scholar 

  • Manteiga, G. W., Lombardìa, M. J., Molina, I., Morales, D., & Santamarìa, L. (2008). Bootstrap mean squared error of a small-area EBLUP. Journal of Statistical Computation and Simulation, 78, 443–462.

    Article  MathSciNet  Google Scholar 

  • McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). London: Chapman and Hall.

    Book  Google Scholar 

  • Moura, F. A. S., Neves, A. F., & Silva, D. B. N. (2017). Small area models for skewed Brazilian business survey data. Journal of the Royal Statistical Society Series A, 180, 1039–1055.

    Article  MathSciNet  Google Scholar 

  • Olsen, M. K., & Schafer, J. L. (2001). A two-part random-effects model for semicontinuous longitudinal data. Journal of the American Statistical Association, 96, 730–745.

    Article  MathSciNet  Google Scholar 

  • Opsomer, J. D., Claeskens, G., Ranalli, M. G., Kauermann, G., & Breidt, F. J. (2008). Non-parametric small area estimation using penalized spline regression. Journal of the Royal Statistical Society Series B, 70, 265–286.

    Article  MathSciNet  Google Scholar 

  • Pfeffermann, D., Terryn, B., & Moura, F. A. S. (2008). Small area estimation under a two-part random effects model with application to estimation of literacy in developing countries. Survey Methodology, 34, 235–249.

    Google Scholar 

  • Ridout, M., Hinde, J., & Demetrio, C. G. B. (2001). A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternative. Biometrics, 57, 219–223.

    Article  MathSciNet  Google Scholar 

  • Ruppert, D., Wand, M. P., & Carroll, R. J. (2003). Semiparametric regression. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Tooze, J. A., Grunwald, G. K., & Jones, R. H. (2002). Analysis of repeated measures data with clumping at zero. Statistical Methods in Medical Research, 11, 341–355.

    Article  Google Scholar 

  • Wand, M. P. (2003). Smoothing and mixed models. Computational Statistics, 18, 223–249.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Petrucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bocci, C., Dreassi, E., Petrucci, A., Rocco, E. (2020). Small Area Estimation for Skewed Semicontinuous Spatially Structured Responses. In: Chandra, G., Nautiyal, R., Chandra, H. (eds) Statistical Methods and Applications in Forestry and Environmental Sciences. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-1476-0_15

Download citation

Publish with us

Policies and ethics