Skip to main content

Development in Copula Applications in Forestry and Environmental Sciences

  • Chapter
  • First Online:

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

Abstract

Recently, copula is being used in social, natural, and physical sciences due to its flexibilities in joint distributions and marginals and high computing power. They are the powerful instruments to model-dependent structures between various complex correlated variables in environmental sciences. This chapter studies the development of copula models and its applications in the area of environmental sciences. It reviews the literature on the types of copula models, including Gumbel, Clayton, and vine, and outlines the theoretical development of mixture bivariate and multivariate copula distributions. A brief review of literature is done using DCC, ARCH, and GARCH copulas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Some of the material in this chapter is in a summarize form from a published review paper authored by Bhatti and Do (2019).

  2. 2.

    Archimedean copulas need to meet some varying criteria, for example, like convexity which are detailed in Nelsen (2007), Ahsanullah and Bhatti (2010), Al Rahahleh et al. (2017), Al Rahahleh and Bhatti (2017), Bhatti and Nguyen (2012), Nguyen and Bhatti (2012) and Nguyen et al. (2016).

  3. 3.

    Other measures of dependence have been used in the literature to compare copulas, such as the measures of concordance Kendall’s τ, Spearman’s ρ, and Gini’s co-graduation index. For further details, see Cherubini et al. (2004), Patton (2006) and Nelsen (2007).

References

  • Abdi, A., Hassanzadeh, Y., Talatahari, S., Fakheri-Fard, A., & Mirabbasi, R. (2016). Parameter estimation of copula functions using an optimization-based method. Theoretical and Applied Climatology, 129(1–2), 1–12.

    Google Scholar 

  • Ahn, K. H., & Palmer, R. N. (2016). Use of a nonstationary copula to predict future bivariate low flow frequency in the Connecticut river basin. Hydrological Processes, 30(19), 3518–3532.

    Article  Google Scholar 

  • Ahsanullah, M., & Bhatti, M. I. (2010). On the dependence functions of Copulas of Gumbel’s bivariate extreme value and exponential distributions. Journal of Statistical Theory and Applications, 9, 615–629.

    MathSciNet  Google Scholar 

  • Al Rahahleh, N., & Bhatti, M. I. (2017). Co-movement measure of information transmission on international equity markets. Physica A: Statistical Mechanics and its Applications, 470, 119–131.

    Article  MathSciNet  Google Scholar 

  • Al Rahahleh, N., Bhatti, M. I., & Adeinat, I. (2017). Tail dependence and information flow: Evidence from international equity markets. Physica A: Statistical Mechanics and its Applications, 474(12), 319–329.

    Article  Google Scholar 

  • Ali, M., Deo, R. C., Downs, N. J., & Maraseni, T. (2018). Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecasting. Atmospheric Research, 213(November), 450–464.

    Article  Google Scholar 

  • Arns, A., Dangendorf, S., Jensen, J., Talke, S., Bender, J., & Pattiaratchi, C. (2017). Sea-level rise induced amplification of coastal protection design heights. Scientific Reports, 7(January), 40171.

    Article  Google Scholar 

  • Arya, F. K., & Zhang, L. (2017). Copula-based Markov process for forecasting and analyzing risk of water quality time series. Journal of Hydrologic Engineering, 22(6), 1–12.

    Article  Google Scholar 

  • Atique, F., & Attoh-Okine, N. (2016). Using copula method for pipe data analysis. Construction and Building Materials, 106(March), 140–148.

    Article  Google Scholar 

  • Bernardino, E. D., & Palacios-Rodríguez, F. (2017). Estimation of extreme component-wise excess design realization: A hydrological application. Stochastic Environmental Research and Risk Assessment, 31(10), 2675–2689.

    Article  Google Scholar 

  • Bezak, N., Šraj, M., & Mikoš, M. (2016). Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides. Journal of Hydrology, 514(Part A-October), 272–284.

    Article  Google Scholar 

  • Bhatti, M. I., & Do, H. Q. (2019). Recent development in copula and its applications to the energy, forestry and environmental sciences. International Journal of Hydrogen Energy, 44, 19453–19473.

    Article  Google Scholar 

  • Bhatti, M. I., & Nguyen, C. C. (2012). Diversification evidence from international equity markets using extreme values and stochastic copulas. Journal of International Financial Markets Institutions and Money, 22(3), 622–646.

    Article  Google Scholar 

  • Bilgrau, A. E., Eriksen, P. S., Rasmussen, J. G., Johnsen, H. E., Dybkær, K., & Bøgsted, M. (2016). GMCM: Unsupervised clustering and meta-analysis using gaussian mixture copula models. Journal of Statistical Software, 70(2), 1–23.

    Article  Google Scholar 

  • Bracken, C., Holman, K. D., Rajagopalan, B., & Moradkhani, H. (2018). A Bayesian hierarchical approach to multivariate nonstationary hydrologic frequency analysis. Water Resources Research, 54(1), 243–255.

    Article  Google Scholar 

  • Cao, J., & Yan, Z. (2017). Probabilistic optimal power flow considering dependences of wind speed among wind farms by pair-copula method. International Journal of Electrical Power & Energy Systems, 84(1), 296–307.

    Article  Google Scholar 

  • Chang, J., Li, Y., Wang, Y., & Yuan, M. (2016). Copula-based drought risk assessment combined with an integrated index in the Wei River Basin, China. Journal of Hydrology, 540(9), 824–834.

    Article  Google Scholar 

  • Chen, F., Huang, G., Fan, Y., & Wang, S. (2016). A copula-based chance-constrained waste management planning method: An application to the city of Regina, Saskatchewan, Canada. Journal of the Air and Waste Management Association, 66(3), 307–328.

    Article  Google Scholar 

  • Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance. Chichester: Wiley.

    Book  MATH  Google Scholar 

  • Cisty, M., Becova, A., & Celar, L. (2016). Analysis of irrigation needs using an approach based on a bivariate copula methodology. Water Resources Management, 30(1), 167–182.

    Article  Google Scholar 

  • Dai, Q., Han, D., Zhuo, L., Zhang, J., Islam, T., & Srivastava, P. K. (2016). Seasonal ensemble generator for radar rainfall using copula and autoregressive model. Stochastic Environmental Research and Risk Assessment, 30(1), 27–38.

    Article  Google Scholar 

  • Daneshkhah, A., Remesan, R., Chatrabgoun, O., & Holman, I. P. (2016). Probabilistic modeling of flood characterizations with parametric and minimum information pair-copula model. Journal of Hydrology, 540(9), 469–487.

    Article  Google Scholar 

  • Das, G. K., Hazra, B., Garg, A., & Ng, C. W. W. (2018). Stochastic hydro-mechanical stability of vegetated slopes: An integrated copula based framework. CATENA, 160(January), 124–133.

    Article  Google Scholar 

  • Delisle-Boulianne, S., Fortin, M., Achim, A., & Pothier, D. (2014). Modelling stem selection in northern hardwood stands: Assessing the effects of tree vigour and spatial correlations using a copula approach. Forestry: An International Journal of Forest Research, 87(5), 607–617.

    Article  Google Scholar 

  • Dong, S., Chen, C., & Tao, S. (2017a). Joint probability design of marine environmental elements for wind turbines. International Journal of Hydrogen Energy, 42(29), 18595–18601.

    Article  Google Scholar 

  • Dong, H., Xu, X., Sui, H., Xu, F., & Liu, J. (2017b). Copula-Based joint statistical model for polarimetric features and its application in PolSAR image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(10), 5777–5789.

    Article  Google Scholar 

  • Dou, X., Kuriki, S., Lin, G. D., & Richards, D. (2016). EM algorithms for estimating the Bernstein copula. Computational Statistics & Data Analysis, 93(1), 228–245.

    Article  MathSciNet  MATH  Google Scholar 

  • Durocher, M., Chebana, F., & Ouarda, T. B. (2016). On the prediction of extreme flood quantiles at ungauged locations with spatial copula. Journal of Hydrology, 533(2), 523–532.

    Article  Google Scholar 

  • Ene, L. T., Næsset, E., & Gobakken, T. (2013). Model-based inference for k-nearest neighbours predictions using a canonical vine copula. Scandinavian Journal of Forest Research, 28(3), 266–281.

    Article  Google Scholar 

  • Fan, L., Wang, H., Wang, C., Lai, W., & Zhao, Y. (2017). Exploration of use of copulas in analysing the relationship between precipitation and meteorological drought in Beijing, China. Advances in Meteorology, 2017, 1–11.

    Google Scholar 

  • Fortin, M., Delisle-Boulianne, S., & Pothier, D. (2013). Considering spatial correlations between binary response variables in forestry: An example applied to tree harvest modeling. Forest Science, 59(3), 253–260.

    Article  Google Scholar 

  • Gao, X., Liu, Y., & Sun, B. (2018). Water shortage risk assessment considering large-scale regional transfers: a copula-based uncertainty case study in Lunan, China. Environmental Science and Pollution Research, 25(23), 23328–23341.

    Article  Google Scholar 

  • Gumbel, E. J. (1960). Distributions des valeurs extrêmes en plusieurs dimensions. Publications de l’Institut de statistique de l’Université de Paris, 9, 171–173.

    MathSciNet  MATH  Google Scholar 

  • Han, Z., & De Oliveira, V. (2016). On the correlation structure of Gaussian copula models for geostatistical count data. Australian and New Zealand Journal of Statistics, 58(1), 47–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Huiqun, M., & Yong, W. (2018). Correlation between chlorophyll-a and related environmental factors based on copula in Chaohu Lake, China. IOP Conference Series: Earth and Environmental Science, 108(4), 042076.

    Google Scholar 

  • Jiang, X., Na, J., Lu, W., & Zhang, Y. (2017). Coupled Monte Carlo simulation and copula theory for uncertainty analysis of multiphase flow simulation models. Environmental Science and Pollution Research, 24(31), 24284–24296.

    Article  Google Scholar 

  • Kangas, A., Myllymäki, M., Gobakken, T., & Næsset, E. (2016). Model-assisted forest inventory with parametric, semiparametric, and nonparametric models. Canadian Journal of Forest Research, 46(6), 855–868.

    Article  Google Scholar 

  • Kanyingi, P., Wang, K., Li, G., & Wu, W. (2017). A robust pair copula-point estimation method for probabilistic small signal stability analysis with large scale integration of wind power. Journal of Clean Energy Technologies, 5(2), 85–94.

    Article  Google Scholar 

  • Kelmendi, A., Kourogiorgas, C. I., Hrovat, A., Panagopoulos, A. D., Kandus, G., & Vilhar, A. (2016). Modeling of joint rain attenuation in earth-space diversity systems using Gaussian copula. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP) (pp. 1–5). Davos, https://doi.org/10.1109/eucap.2016.7481617.

  • Kershaw, J. A., Richards, E. W., McCarter, J. B., & Oborn, S. (2010). Spatially correlated forest stand structures: A simulation approach using copulas. Computers and Electronics in Agriculture, 74(1), 120–128.

    Article  Google Scholar 

  • Kershaw, J. A., Weiskittel, A. R., Lavigne, M. B., & McGarrigle, E. (2017). An imputation/copula-based stochastic individual tree growth model for mixed species Acadian forests: A case study using the Nova Scotia permanent sample plot network. Forest Ecosystems, 4(1), 15.

    Article  Google Scholar 

  • Kim, M. (2016). Sparse conditional copula models for structured output regression. Pattern Recognition, 60(12), 761–769.

    Article  MATH  Google Scholar 

  • Klein, B., Meissner, D., Kobialka, H.-U., & Reggiani, P. (2016). Predictive uncertainty estimation of hydrological multi-model ensembles using pair-copula construction. Water, 8(4), 125.

    Article  Google Scholar 

  • Kovács, E., Szántai, T. (2016). Hypergraphs in the characterization of regular vine copula structures. In Proceeding of the 13th Conference on Mathematics and its Application (pp. 335–344). University “Politehnica” of Timisoara, arXiv:1604.02652.

  • Lazoglou, G., & Anagnostopoulou, C. (2019). Joint distribution of temperature and precipitation in the Mediterranean, using the Copula method. Theoretical and Applied Climatology, 135(3–4), 1399–1411.

    Article  Google Scholar 

  • Li, H., Shao, D., Xu, B., Chen, S., Gu, W., & Tan, X. (2016). Failure analysis of a new irrigation water allocation mode based on copula approaches in the Zhanghe Irrigation District, China. Water, 8(6), 251.

    Article  Google Scholar 

  • Liu, Z., Cheng, L., Hao, Z., Li, J., Thorstensen, A., & Gao, H. (2018a). A Framework for exploring joint effects of conditional factors on compound floods. Water Resources Research, 54(4), 2681–2696.

    Article  Google Scholar 

  • Liu, Z., Guo, S., Xiong, L., & Xu, C.-Y. (2018b). Hydrological uncertainty processor based on a copula function. Hydrological Sciences Journal, 63(1), 74–86.

    Article  Google Scholar 

  • Liu, C., Zhou, Y., Sui, J., & Wu, C. (2018c). Multivariate frequency analysis of urban rainfall characteristics using three-dimensional copulas. Water Science and Technology, 2017(1), 206–218.

    Article  Google Scholar 

  • MacPhee, C., Kershaw, J. A., Weiskittel, A. R., Golding, J., & Lavigne, M. B. (2018). Comparison of approaches for estimating individual tree height-diameter relationships in the Acadian forest region. Forestry: An International Journal of Forest Research, 91(1), 132–146.

    Article  Google Scholar 

  • Manning, C., Widmann, M., Bevacqua, E., Loon, A. F. V., Maraun, D., & Vrac, M. (2018). Soil moisture drought in Europe: A compound event of precipitation and potential evapotranspiration on multiple time scales. Journal of Hydrometeorology, 19(8), 1255–1271.

    Article  Google Scholar 

  • Moradian, H., Larocque, D., & Bellavance, F. (2017). Survival forests for data with dependent censoring. Statistical Methods in Medical Research, 28(2), 445–461.

    Article  MathSciNet  MATH  Google Scholar 

  • Mortuza, M. R., Moges, E., Demissie, Y., & Li, H.-Y. (2019). Historical and future drought in Bangladesh using copula-based bivariate regional frequency analysis. Theoretical and Applied Climatology, 135(3–4), 855–871.

    Article  Google Scholar 

  • Musafer, G. N., & Thompson, M. H. (2017). Non-linear optimal multivariate spatial design using spatial vine copulas. Stochastic Environmental Research and Risk Assessment, 31(2), 551–570.

    Article  Google Scholar 

  • Musgrove, D., Hughes, J., & Eberly, L. (2016). Hierarchical copula regression models for areal data. Spatial Statistics, 17(10), 38–49.

    Article  MathSciNet  Google Scholar 

  • Nelsen, R. B. (2007). An introduction to copulas. New York: Springer Science and Business Media.

    MATH  Google Scholar 

  • Nguyen, C. C., & Bhatti, M. I. (2012). Copula model dependency between oil prices and stock markets: Evidence from China and Vietnam. Journal of International Financial Markets Institutions and Money, 22(4), 758–773.

    Article  Google Scholar 

  • Nguyen, C. C., Bhatti, M. I., Komornikova, M., & Komornik, J. (2016). Gold price and stock markets nexus under mixed-copulas. Economic Modelling, 58, 283–292.

    Article  Google Scholar 

  • Nguyen-Huy, T., Deo, R. C., Mushtaq, S., An-Vo, D.-A., & Khan, S. (2018). Modeling the joint influence of multiple synoptic-scale, climate mode indices on Australian wheat yield using a vine copula-based approach. European Journal of Agronomy, 98(10), 65–81.

    Article  Google Scholar 

  • Ogana, F. N., Osho, J. S. A., & Gorgoso-Varela, J. J. (2018). An approach to modeling the joint distribution of tree diameter and height data. Journal of Sustainable Forestry, 37(5), 475–488.

    Article  Google Scholar 

  • Ozga-Zielinski, B., Ciupak, M., Adamowski, J., Khalil, B., & Malard, J. (2016). Snow-melt flood frequency analysis by means of copula based 2D probability distributions for the Narew River in Poland. Journal of Hydrology: Regional Studies, 6(6), 26–51.

    Google Scholar 

  • Pappadà, R., Durante, F., & Salvadori, G. (2017). Quantification of the environmental structural risk with spoiling ties: Is randomization worthwhile? Stochastic Environmental Research and Risk Assessment, 31(10), 2483–2497.

    Article  Google Scholar 

  • Pappadà, R., Durante, F., Salvadori, G., & De Michele, C. (2018). Clustering of concurrent flood risks via Hazard Scenarios. Spatial Statistics, 23(3), 124–142.

    Article  MathSciNet  Google Scholar 

  • Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International Economic Review, 47(2), 527–556.

    Article  MathSciNet  Google Scholar 

  • Peng, Y., Chen, K., Yan, H., & Yu, X. (2017). Improving flood-risk analysis for confluence flooding control downstream using copula Monte Carlo Method. Journal of Hydrologic Engineering, 22(8), 04017018.

    Article  Google Scholar 

  • Perrone, E., Rappold, A., & Müller, W. G. (2016). Optimal discrimination design for copula models. arXiv:1601.07739.

  • Pothier, D., Fortin, M., Auty, D., Delisle-Boulianne, S., Gagné, L.-V., & Achim, A. (2013). Improving tree selection for partial cutting through joint probability modelling of tree vigor and quality. Canadian Journal of Forest Research, 43(3), 288–298.

    Article  Google Scholar 

  • Prenen, L., Braekers, R., & Duchateau, L. (2016). Extending the Archimedean copula methodology to model multivariate survival data grouped in clusters of variable size. Journal of the Royal Statistical Society, B, 79(2), 483–505.

    Article  MathSciNet  MATH  Google Scholar 

  • Qian, L., Wang, H., Dang, S., Wang, C., Jiao, Z., & Zhao, Y. (2018). Modelling bivariate extreme precipitation distribution for data-scarce regions using Gumbel-Hougaard copula with maximum entropy estimation. Hydrological Processes, 32(2), 212–227.

    Article  Google Scholar 

  • Razmkhah, H., AkhoundAli, A. M., Radmanesh, F., & Saghafian, B. (2016). Evaluation of rainfall spatial correlation effect on rainfall-runoff modeling uncertainty, considering 2-copula. Arabian Journal of Geosciences, 9(4), 1–15.

    Article  Google Scholar 

  • Requena, A. I., Flores, I., Mediero, L., & Garrote, L. (2016). Extension of observed flood series by combining a distributed hydro-meteorological model and a copula-based model. Stochastic Environmental Research and Risk Assessment, 30(5), 1363–1378.

    Article  Google Scholar 

  • Saarela, S., Andersen, H.-E., Grafström, A., Schnell, S., Gobakken, T., Næsset, E., et al. (2017). A new prediction-based variance estimator for two-stage model-assisted surveys of forest resources. Remote Sensing of Environment, 192(4), 1–11.

    Article  Google Scholar 

  • Salvadori, G., Durante, F., De Michele, C., Bernardi, M., & Petrella, L. (2016). A multivariate copula based framework for dealing with hazard scenarios and failure probabilities. Water Resources Research, 52(5), 3701–3721.

    Article  Google Scholar 

  • Sarhadi, A., Burn, D. H., Concepción Ausín, M., & Wiper, M. P. (2016). Time varying nonstationary multivariate risk analysis using a dynamic Bayesian copula. Water Resources Research, 52(3), 2327–2349.

    Article  Google Scholar 

  • Sarmiento, C., Valencia, C., & Akhavan-Tabatabaei, R. (2018). Copula autoregressive methodology for the simulation of wind speed and direction time series. Journal of Wind Engineering and Industrial Aerodynamics, 174(3), 188–199.

    Article  Google Scholar 

  • Serinaldi, F., Grimaldi, S., Abdolhosseini, M., Corona, P., & Cimini, D. (2012). Testing copula regression against benchmark models for point and interval estimation of tree wood volume in beech stands. European Journal of Forest Research, 131(5), 1313–1326.

    Article  Google Scholar 

  • Sklar, A. (1959). Distribution functions of n dimensions and margins. Publications of the Institute of Statistics of the University of Paris, 8, 229–231.

    Google Scholar 

  • Sun, C., Bie, Z., Xie, M., & Jiang, J. (2016). Fuzzy copula model for wind speed correlation and its application in wind curtailment evaluation. Renewable Energy, 93(10), 68–76.

    Article  Google Scholar 

  • Tatoutchoup, F. D. (2017). Forestry auctions with interdependent values: Evidence from timber auctions. Forest Policy and Economics, 80(7), 107–115.

    Article  Google Scholar 

  • Torres, R., De Michele, C., Laniado, H., & Lillo, R. E. (2017). Directional multivariate extremes in environmental phenomena. Environmetrics, 28(2), e2428.

    Article  MathSciNet  Google Scholar 

  • Um, M. J., Joo, K., Nam, W., & Heo, J. H. (2017). A comparative study to determine the optimal copula model for the wind speed and precipitation of typhoons. International Journal of Climatology, 37(4), 2051–2062.

    Article  Google Scholar 

  • Vezzoli, R., Salvadori, G., & De Michele, C. (2017). A distributional multivariate approach for assessing performance of climate-hydrology models. Scientific Reports, 7(1), 12071.

    Article  Google Scholar 

  • Wang, M., Upadhyay, A., & Zhang, L. (2010). Trivariate distribution modeling of tree diameter, height, and volume. Forest Science, 56(3), 290–300.

    Google Scholar 

  • Wang, X., Zhang, Y., Feng, X., Feng, Y., Xue, Y., & Pan, N. (2017). Analysis and application of drought characteristics based on run theory and copula function. Transactions of the Chinese Society of Agricultural Engineering, 33(10), 206–214.

    Google Scholar 

  • Wang, S., Zhang, X., & Liu, L. (2016). Multiple stochastic correlations modeling for microgrid reliability and economic evaluation using pair-copula function. International Journal of Electrical Power & Energy Systems, 76(3), 44–52.

    Article  Google Scholar 

  • Xu, Y., Tang, X. S., Wang, J., & Kuo-Chen, H. (2016). Copula-based joint probability function for PGA and CAV: A case study from Taiwan. Earthquake Engineering and Structural Dynamics, 45(13), 2123–2136.

    Article  Google Scholar 

  • Yanovsky, F. J., Rudiakova, A. N., & Sinitsyn, R. B. (2016). Multivariate copula approach for polarimetric classification in weather radar applications. In Proceedings of the 2016 17th International Radar Symposium (IRS) (pp. 1–5). Krakow.

    Google Scholar 

  • Yazdi, J. (2017). Check dam layout optimization on the stream network for flood mitigation: Surrogate modelling with uncertainty handling. Hydrological Sciences Journal, 62(10), 1669–1682.

    Article  Google Scholar 

  • Yee, K. C., Suhaila, J., Yusof, F., & Mean, F. H. (2016). Bivariate copula in Johor rainfall data. AIP Conference Proceedings, 1750, 1–6. (Malaysia).

    Google Scholar 

  • Yin, W., JiGuang, Y., ShuGuang, L., & Li, W. (2018). Copula entropy coupled with wavelet neural network model for hydrological prediction. IOP Conference Series: Earth and Environmental Science, 113(1), 012160.

    Google Scholar 

  • You, Q., Liu, Y., & Liu, Z. (2018). Probability analysis of the water table and driving factors using a multidimensional copula function. Water, 10(4), 472.

    Article  Google Scholar 

  • Zhang, Y., Kim, C.-W., Beer, M., Dai, H., & Soares, C. G. (2018a). Modeling multivariate ocean data using asymmetric copulas. Coastal Engineering, 135(5), 91–111.

    Article  Google Scholar 

  • Zhang, J., Lin, X., & Guo, B. (2016). Multivariate copula-based joint probability distribution of water supply and demand in irrigation district. Water Resources Management, 30(7), 2361–2375.

    Article  Google Scholar 

  • Zhang, X., & Wilson, A. (2016). System reliability and component importance under dependence: A copula approach. Technometrics, 59(2), 215–224.

    Article  MathSciNet  Google Scholar 

  • Zhang, Z., Zhang, Q., Singh, V. P., & Peng, S. (2018b). Ecohydrological effects of water reservoirs with consideration of asynchronous and synchronous concurrences of high- and low-flow regimes. Hydrological Sciences Journal, 63(4), 615–629.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ishaq Bhatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatti, M.I., Do, H.Q. (2020). Development in Copula Applications in Forestry and Environmental Sciences. In: Chandra, G., Nautiyal, R., Chandra, H. (eds) Statistical Methods and Applications in Forestry and Environmental Sciences. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-1476-0_13

Download citation

Publish with us

Policies and ethics