Skip to main content

Plant Growth Regulators for Cotton Production in Changing Environment

  • Chapter
  • First Online:
Cotton Production and Uses

Abstract

In the recent past, much interest has been generated for the commercial application of plant growth regulators in cotton production, especially in the eventual threat to climate change. Since the 1950s, a number of plant growth regulators are in use to improve quantity and quality of cotton produce. These substances are organic ones, unlike inorganic nutrients, which are applied in low concentrations to mainstream various physiological, biochemical, and anatomical processes during the life span. These organic substances constitute auxins, gibberellins, cytokinins, abscisic acid, and ethylene that are applied to leverage seed germination and seedling vigor; upscale photosynthetic machinery, fruitfulness, and greater divergence of photoassimilates from source to sink; and improve tolerance to external vagaries and timely harvesting of crop ahead of weather onslaught. Other than these, brassinosteroids, jasmonates, and salicylic acid are also applied. The journey of application of various substances starts from seed treatment to final harvest. The growth and development of cotton crop are greatly interacted with ecological environments and other farm management practices. Therefore, rates and timings of application of various substances are adjusted in concurrence with its architectural growth and developmental habit in its growth cycle. The usage of plant growth regulators has been termed “shotgun” approach in the realm of climate-smart cotton production. This management tool is not only cost-effective but also ready to use during the season. The advancing footprints of climate change are to be mitigated by adaptation of strategies considering region-specific scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

1-MCP:

1-methylcyclopropeng

ABA:

Abscisic acid

BAP:

6-benzylaminopirine

BRs:

Brassinosteroids

Bt:

Bacillus thuringiensis

BT:

Glycine betaine

eCO2 :

Elevated carbon dioxide

GA:

Gibberellic acid

IBA:

Indole butyric acid

JA:

Jasmonic acid

PGRs:

Plant growth regulators

PUT:

Putrescine

SA:

Salicylic acid

SPD:

Spermidine

SPM:

Spermine

References

  • Abbas Q, Ahmad S (2018) Effect of different sowing times and cultivars on cotton fiber quality under stable cotton-wheat cropping system in southern Punjab, Pakistan. Pak J Life Soc Sci 16:77–84

    Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in Plant Biology, 2nd edn. Academic Press, Inc., San Diego, pp 1–13

    Book  Google Scholar 

  • Ahmad S, Raza I (2014) Optimization of management practices to improve cotton fiber quality under irrigated arid environment. J Food Agri Environ 2(2):609–613

    Google Scholar 

  • Ahmad S, Raza I, Ali H, Shahzad AN, Atiq-ur-Rehman, Sarwar N (2014) Response of cotton crop to exogenous application of glycinebetaine under sufficient and scarce water conditions. Braz J Bot 37(4):407–415

    Article  Google Scholar 

  • Ahmad S, Abbas Q, Abbas G, Fatima Z, Atique-ur-Rehman, Naz S, Younis H, Khan RJ, Nasim W, Habib ur Rehman M, Ahmad A, Rasul G, Khan MA, Hasanuzzaman M (2017) Quantification of climate warming and crop management impacts on cotton phenology. Plants 6(7):1–16

    Google Scholar 

  • Ahmad S, Iqbal M, Muhammad T, Mehmood A, Ahmad S, Hasanuzzaman M (2018) Cotton productivity enhanced through transplanting and early sowing. Acta Sci Biol Sci 40:e34610

    Google Scholar 

  • Ahmed AHH, Darwish E, Alobaidy MG (2017) Impact of putrescine and 24-epibrassinolide on growth, yield and chemical constituents of cotton (Gossypium barbadense L.) plant grown under drought stress conditions. Sciences 16:9–23

    CAS  Google Scholar 

  • Ali H, Afzal MN, Ahmad F, Ahmad S, Akhtar M, Atif R (2011) Effect of sowing dates, plant spacing and nitrogen application on growth and productivity on cotton crop. Int J Sci Eng Res 2(9):1–6

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013a) Integrated weed management in cotton cultivated in the alternate-furrow planting system. J Food Agri Environ 11(3&4):1664–1669

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013b) Impact of integrated weed management on flat-sown cotton (Gossypium hirsutum L.). J Anim Plant Sci 23(4):1185–1192

    CAS  Google Scholar 

  • Ali H, Hameed RA, Ahmad S, Shahzad AN, Sarwar N (2014a) Efficacy of different techniques of nitrogen application on American cotton under semi-arid conditions. J Food Agri Environ 12(1):157–160

    Google Scholar 

  • Ali H, Hussain GS, Hussain S, Shahzad AN, Ahmad S, Javeed HMR, Sarwar N (2014b) Early sowing reduces cotton leaf curl virus occurrence and improves cotton productivity. Cercetări Agronomice în Moldova XLVII(4):71–81

    Google Scholar 

  • Alobaidy M (2013) Effect of putrescine and humic acid on cotton plant growing under salinity stress conditions

    Google Scholar 

  • Amin A, Nasim W, Mubeen M, Nadeem M, Ali L, Hammad HM, Sultana SR, Jabran K, Habib ur Rehman M, Ahmad S, Awais M, Rasool A, Fahad S, Saud S, Shah AN, Ihsan Z, Ali S, Bajwa AA, Hakeem KR, Ameen A, Amanullah, Hafeez Ur Rehman, Alghabar F, Jatoi GH, Akram M, Khan A, Islam F, Ata-Ul-Karim ST, Rehmani MIA, Hussain S, Razaq M, Fathi A (2017) Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environ Sci Pollut Res 24(6):5811–5823

    CAS  Google Scholar 

  • Amin A, Nasim W, Mubeen M, Ahmad A, Nadeem M, Urich P, Fahad S, Ahmad S, Wajid A, Tabassum F, Hammad HM, Sultana SR, Anwar S, Baloch SK, Wahid A, Wilkerson CJ, Hoogenboom G (2018) Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan. Agr Syst 167:213–222

    Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bange MP, Baker JT, Bauer PJ, Broughton KJ, Constable GA, Luo Q, Oosterhuis DM, Osanai Y, Payton P, Tissue DT (2016) Climate change and cotton production in modern farming systems. CABI, Wallingford

    Book  Google Scholar 

  • Bariola L, Chu C, Henneberry T (1990) Timing applications of plant growth regulators and last irrigation for pink bollworm (Lepidoptera: Gelechiidae) control. J Econ Entomol 83:1074–1079

    Article  Google Scholar 

  • Bartholomew DP, Sanewski GM (2018) 11 Inflorescence and fruit development and yield. In: The pineapple: botany, production and uses. CABI, Wallingford, p 233

    Chapter  Google Scholar 

  • Bauer P, Cothren J (1990) Growth-promoting activity of chlordimeform. Agron J 82:73–75

    Article  CAS  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Ben-Porath A, Baker D (1990) Taproot restriction effects on growth, earliness, and dry weight partitioning of cotton. Crop Sci 30:809–814

    Article  Google Scholar 

  • Bharwana S, Ali S, Farooq MA, Iqbal N, Hameed A, Abbas F, Ahmad MSA (2014a) Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton

    Google Scholar 

  • Bharwana SA, Ali S, Farooq MA, Ali B, Iqbal N, Abbas F, Ahmad MSA (2014b) Hydrogen sulfide ameliorates lead-induced morphological, photosynthetic, oxidative damages and biochemical changes in cotton. Environ Sci Pollut Res 21:717–731

    Article  CAS  Google Scholar 

  • Bhatt J, Ramanujam T (1971) Some responses of a short-branch cotton variety to gibberellin. Cotton Growing Rev 48:136

    Google Scholar 

  • Bhatt J, Raman C, Sankaranarayanan T, Iyer S (1972) Changes in lint characters of cotton varieties by growth regulators. Cotton Growing Rev 49:160

    Google Scholar 

  • Bibi A, Oosterhuis D, Gonias E (2008) Photosynthesis, quantum yield of photosystem II and membrane leakage as affected by high temperatures in cotton genotypes. J Cotton Sci 12:150–159

    CAS  Google Scholar 

  • Bibi AC, Oosterhuis DM, Gonias ED (2010) Exogenous application of putrescine ameliorates the effect of high temperature in Gossypium hirsutum L. flowers and fruit development. J Agron Crop Sci 196:205–211

    Article  CAS  Google Scholar 

  • Bibi N, Ahmed IM, Fan K, Dawood M, Li F, Yuan S, Wang X (2017) Role of brassinosteroids in alleviating toxin-induced stress of Verticillium dahliae on cotton callus growth. Environ Sci Pollut Res 24:12281–12292

    Article  CAS  Google Scholar 

  • Binder BM, Bleecker A (2003) A model for ethylene receptor function and 1-methylcyclopropene action. ACTA Hort 628:177–187

    Article  CAS  Google Scholar 

  • Blankenship SM, Dole JM (2003) 1-Methylcyclopropene: a review. Postharvest Biology and Technology 28:1–25

    Article  CAS  Google Scholar 

  • Bocion P, De Silva W, Hüppi G, Szkrybalo W (1975) Group of new chemicals with plant growth regulatory activity. Nature 258:142

    Article  CAS  Google Scholar 

  • Boquet D, Coco A (1993) Cotton yield and growth interactions among cultivars, row spacings and soil types under two levels of Pix. In: Proceedings, Beltwide Cotton Conferences, 10–14 January, New Orleans, Louisiana, USA. National Cotton Council, Memphis, USA, pp 1370–1372

    Google Scholar 

  • Campbell C, Zentner R, Bowren K, Townley-Smith L, Schnitzer M (1991) Effect of crop rotations and fertilization on soil organic matter and some biochemical properties of a thick Black Chernozem. Can J Soil Sci 71:377–387

    Article  CAS  Google Scholar 

  • Cappy J, Cothren J (1980) Root growth and development of Pix-treated cotton plants

    Google Scholar 

  • Cathey GW (1979) Acceleration of ball dehiscence with desiccant chemicals. Agron J 71:505–510

    Article  Google Scholar 

  • Cathey G, Bailey J (1987) Evaluation of chlordimeform for cotton yield enhancement. J Econ Entomol 80:670–674

    Article  CAS  Google Scholar 

  • Cathey GW, Meredith WR (1988) Cotton response to planting date and mepiquat chloride. Agron J 80:463–466

    Article  Google Scholar 

  • Cathey GW, Thomas RO (1986) Use of plant growth regulators for crop modification. In: Mauney JR, Stewart JMD (eds) Cotton physiology. The Cotton Foundation, Memphis, TN

    Google Scholar 

  • Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang T, Guo W, Chen X, Stelly DM, Rabinowicz PD, Town CD (2007) Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145:1303–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Liu Z-H, Feng L, Zheng Y, Li D-D, Li X-B (2013) Genome-wide functional analysis of cotton (Gossypium hirsutum) in response to drought. PLoS One 8:e80879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christiansen M, Ashworth E (1978) Prevention of chilling injury to Seedling cotton with anti-transpirants 1. Crop Sci 18:907–908

    Article  Google Scholar 

  • Christiansen M, Hilton J (1974) Prevention of trifluralin effect on cotton with soil applied lipids 1. Crop Sci 14:489–490

    Article  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Biol 49:427–451

    Article  CAS  Google Scholar 

  • Cole D, Wheeler J (1974) Effect of pregermination treatments on germination and growth of cottonseed at suboptimal temperatures 1. Crop Sci 14:451–454

    Article  Google Scholar 

  • Conaty W, Tan D, Constable G, Sutton B, Field D, Mamum E (2008) Genetic variation for waterlogging tolerance in cotton. J Cotton Sci 12:53–61

    Google Scholar 

  • Constable GA (1995) Predicting yield responses of cotton to growth regulator. In: Constable GA, Forrester NW (eds) Challenging the future. Proceedings of the World Cotton Research Conference-1, CSIRO, Brisbane, Australia, pp 3–5

    Google Scholar 

  • Corbin BR, Frans RE (1991) Protecting cotton (Gossypium hirsutum) from Fluometuron injury with seed protectants. Weed Sci 39:408–411

    Article  CAS  Google Scholar 

  • Cothren J, Cotterman C (1980) Evaluation of Cytozyme Crop+ as a foliar application to enhance cotton yields. Arkansas Farm Res 29(6):2

    Google Scholar 

  • Cothren JT, Oosterhuis D (2010) Use of growth regulators in cotton production. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiology of cotton. Springer, pp 289–303

    Google Scholar 

  • Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci 92:4114–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Plant hormones. Springer, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  • Davies PJ (2013) Plant hormones: physiology, biochemistry and molecular biology. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • De Silva W (1971) Some effects of the growth retardant chemical CCC on cotton in Uganda. In: Cotton Growing Rev

    Google Scholar 

  • Dong Y, Jinc SS, Liu S, Xu LL, Kong J (2014) Effects of exogenous nitric oxide on growth of cotton seedlings under NaCl stress

    Google Scholar 

  • Egamberdieva D, Jabborova D, Hashem A (2015) Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi J Biol Sci 22:773–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Beltagi HS, Ahmed SH, Namich AAM, Abdel-Sattar PR (2017) Effect of salicylic acid and potassium citrate on cotton plant under salt stress. Fresen Environ Bull 26:1091–1100

    CAS  Google Scholar 

  • Ephrath J, Timlin D, Reddy V, Baker J (2011) Irrigation and elevated carbon dioxide effects on whole canopy photosynthesis and water use efficiency in cotton (Gossypium hirsutum L.). Plant Biosyst 145:202–215

    Article  Google Scholar 

  • Ergle DR (1958) Compositional factors associated with the growth responses of young cotton plants to gibberellic acid. Plant Physiol 33:344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erwin D, Tsai S, Khan R (1979) Growth retardants mitigate Verticillium wilt and increase yield of cotton. California Agric 33:8–10

    CAS  Google Scholar 

  • Fernandez C, Cothren J, McINNES K (1991) Partitioning of biomass in well-watered and water-stressed cotton plants treated with mepiquat chloride. Crop Sci 31:1224–1228

    Article  CAS  Google Scholar 

  • Fernandez C, Cothren J, McInnes K (1992) Carbon and water economies of well-watered and water-deficient cotton plants treated with mepiquat chloride. Crop Sci 32:175–180

    Article  CAS  Google Scholar 

  • Freytag A, Coleman E (1973) Effect of multiple applications of 2, 3, 5-triiodobenzoic acid (TIBA) on yields of stormproof and nonstorm proof cotton. Agron J 65:610–612

    Article  Google Scholar 

  • Fritz CD (1997) Finish® cotton harvest-aid EUP results. In: Davis TD (ed) Proceedings of the 23rd Annual Meeting of the Plant Growth Regulation Society of America. Plant Growth Regulation Society of America, Research Triangle Park, pp 224–229

    Google Scholar 

  • Galani S, Hameed S, Ali MK (2016) Exogenous application of salicylic acid: inducing thermotolerance in cotton (Gossypium hirsutum L.) seedlings

    Google Scholar 

  • Gausman H, Walter H, Stein E, Rittig F, Leamer R, Escobar D, Rodriguez R (1979) Leaf CO2 uptake and chlorophyll ratios of PIX-treated cotton. In: Proceedings-Plant Growth Regulator Working Group

    Google Scholar 

  • Gausman H, Stabenow J, Rittig, F, Escobar D, Garza M (1980a) Mepiquat chloride effects on cotton leaf anatomy. In: Proceedings of the Plant Growth Regulator Working Group, pp 8–14 (03366982565)

    Google Scholar 

  • Gausman H, Walter H, Rittig F, Escobar D, Rodriguez R (1980b) Effect of mepiquat chloride (Pix) on CO2 uptake of cotton plant leaves. In: Proceedings of the Plant Growth Regulator Working Group, pp 1–6

    Google Scholar 

  • Gerik TJ, Oosterhuis DM, Torbert HA (1998) Managing cotton nitrogen. Adv Agron 64:115–147

    Article  Google Scholar 

  • Gill SS, Gill R, Anjum NA (2014) Target osmoprotectants for abiotic stress tolerance in crop plants—glycine betaine and proline. In: Anjum NA, Gill SS, Gill R (eds) Plant adaptation to environmental change: significance of amino acids and their derivatives. CAB International, Wallingford, CT, pp 97–108

    Chapter  Google Scholar 

  • Gorham J (1995) Betaines in higher plants-biosynthesis and role in stress metabolism. Amino acids and their derivatives in higher plants, pp 171-203

    Chapter  Google Scholar 

  • Graham CT, Jenkins JN, McCarty JC, Parrott WL (1987) Effects of mepiquat chloride on natural plant resistance to tobacco budworm in cotton 1. Crop Sci 27:360–361

    Article  CAS  Google Scholar 

  • Greene DW (1999) Tree growth management and fruit quality of apple trees treated with prohexadione-calcium (BAS 125). Hort Sci 34:1209–1212

    Article  CAS  Google Scholar 

  • Gross D, Parthier B (1994) Novel natural substances acting in plant growth regulation. J Plant Growth Regul 13:93

    Article  CAS  Google Scholar 

  • Guinn G (1985) Fruiting of cotton. III. Nutritional stress and cutout 1. Crop Sci 25:981–985

    Article  Google Scholar 

  • Guinn G (1986) Hormonal relations during reproduction. In: Cotton physiology. The Cotton Foundation, Memphis, TN, pp 113–136

    Google Scholar 

  • Gwathmey C, Clement J (2010) Alteration of cotton source–sink relations with plant population density and mepiquat chloride. Field Crops Res 116:101–107

    Article  Google Scholar 

  • Hacskaylo J, Scales A (1959) Some effects of guthion alone and in combination with DDT and of a dieldrin-DDT mixture on growth and fruiting of the cotton plant. J Econ Entomol 52:396–398

    Article  CAS  Google Scholar 

  • Han I-S, Jongewaard I, Fosket DE (1991) Limited expression of a diverged 0-tubulin gene during soybean (Glycine ma% [L.] Merr.) development. Plant Mol Biol l6:225–234

    Article  Google Scholar 

  • Hanafy Ahmed AH, Darwish E, Hamoda SAF, Alobaidy MG (2013) Effect of putrescine and humic acid on growth, yield and chemical composition of cotton plants grown under saline soil conditions. American-Eurasian J Agric Environ Sci 13:479–497

    CAS  Google Scholar 

  • Hanafy Ahmed A, Darwish E, Alobaidy M (2016) Impact of putrescine and 24-epibrassinolide on growth, yield and chemical constituents of cotton (Gossypium barbadense L.) plant grown under drought stress conditions

    Google Scholar 

  • Hardaker JB, Lien G (2010) Probabilities for decision analysis in agriculture and rural resource economics: The need for a paradigm change. Agricultural Systems 103:345–350

    Article  Google Scholar 

  • Hassawy GS, Hamilton K (1971) Effects of trifluralin and organophosphorus compounds on cotton seedlings. Weed Sci 19:166–169

    Article  CAS  Google Scholar 

  • Hearn A, Constable G (1984) Irrigation for crops in a sub-humid environment VII. Evaluation of irrigation strategies for cotton. Irri Sci 5:75–94

    Article  Google Scholar 

  • Hedin PA, McCarty JC Jr (1991) Effects of kinetin formulations on allelochemicals and agronomic traits of cotton. J Agric Food Chem 39:549–553

    Article  CAS  Google Scholar 

  • Heilman M, Brown J (1981) Interactions of nitrogen with Pix on the growth and yield of cotton. In: Proceedings of Beltwide Cotton Production Research Conferences, New Orleans, LA, 4–8 Jan 1981, National Cotton Council of America, Memphis, TN

    Google Scholar 

  • Hickey J (1996) Farm verification of active bloom applications of PGR-IV to enhance yield and maturity. In: Dugger P, Richter DA (eds) Proceedings of Beltwide Cotton Production Research Conferences. National Cotton Council of America, Memphis, TN

    Google Scholar 

  • Hodges H, Reddy V, Reddy K (1991) Mepiquat chloride and temperature effects on photosynthesis and respiration of fruiting cotton. Crop Sci 31:1302–1308

    Article  CAS  Google Scholar 

  • Hornsey IS (2003) A history of beer and brewing. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Horton RF (1971) Stomatal opening: the role of abscisic acid. Can J Bot 49:583–585

    Article  CAS  Google Scholar 

  • Huang S, Gausman H (1982) Ultrastructural observations on temperature resistance increase in cotton plants (Gossypium hirsutum L.) by mepiquat chloride. In: Wilson WC (ed) Proceedings annual meeting Plant Growth Regulator Society of America Conference. Plant Growth Regulator Society of America, Lake Alfred, FL

    Google Scholar 

  • IPCC (2014) Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [core writing team, RK Pachauri, and LA Meyer, editors]. IPCC, Geneva

    Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Modarres Sanavy SAM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Jenkins JN, McCarty J, Parrott W (1990) Fruiting efficiency in cotton: boll size and boll set percentage. Crop Sci 30:857–860

    Article  Google Scholar 

  • Jones ML, Kim ES, Newman SE (2001) Role of ethylene and 1-MCP in flower development and petal abscission in zonal geraniums. Hort Sci 36:1305–1309

    Article  CAS  Google Scholar 

  • Karabudak T, Bor M, Özdemir F, Türkan İ (2014) Glycine betaine protects tomato (Solanum lycopersicum) plants at low temperature by inducing fatty acid desaturase7 and lipoxygenase gene expression. Mol Biol Reports 41:1401–1410

    Article  CAS  Google Scholar 

  • Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–31

    Article  CAS  PubMed  Google Scholar 

  • Key JL (1989) Modulation of gene expression by auxin. Bioessays 11:52–58

    Article  CAS  PubMed  Google Scholar 

  • Kittock D, Arle HF (1977) Termination of late season cotton fruiting with plant growth regulators 1. Crop Sci 17:320–324

    Article  CAS  Google Scholar 

  • Klepper B, Taylor H (1979) Limitations to current models describing water uptake by plant root systems. In: The soil–root interface. Elsevier, pp 51–65

    Google Scholar 

  • Kondo S, Fiebig A, Okawa K, Ohara H, Kowitcharoen L, Nimitkeatkai H, Kittikorn M, Kim M (2011) Jasmonic acid, polyamine, and antioxidant levels in apple seedlings as affected by ultraviolet-C irradiation. Plant Growth Regul 64:83–89

    Article  CAS  Google Scholar 

  • Kong X, Wang T, Li W, Tang W, Zhang D, Dong H (2016) Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.). Acta Physiologiae Plantarum 38:61

    Article  CAS  Google Scholar 

  • Kuppu S, Mishra N, Hu R, Sun L, Zhu X, Shen G, Blumwald E, Payton P, Zhang H (2013) Water-deficit inducible expression of a cytokinin biosynthetic gene IPT improves drought tolerance in cotton. PLoS One 8:e64190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane H (1958) Response of cotton on the Texas high plains to foliar treatments of gibberellc acid. In: Proceedings of Beltwide Cotton Production Research Conferences. National Cotton Council of America, Memphis, TN

    Google Scholar 

  • Lau S, Jürgens G, De Smet I (2008) The evolving complexity of the auxin pathway. Plant Cell 20:1738–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chory J (1999) Brassinosteroid actions in plants. J Exp Bot 50:275–282

    CAS  Google Scholar 

  • Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014a) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9:e86895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S, Dong Y, Xu L, Kong J (2014b) Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regul 73:67–78

    Article  CAS  Google Scholar 

  • Livingston S, Parker R (1994) Lint yield responses to applications of PGR-IV and mepiquat chloride applied to five cotton varieties in South Texas. In: Proceedings Beltwide Cotton Conferences. National Cotton Council of America, Memphis, TN

    Google Scholar 

  • Livingston S, Anderson D, Wilde Jr L, Hickey J (1992) Use of foliar application of pix PGR, and PHCA in low rate multiple applications for cotton improvement under irrigated and dryland conditions. In: Proceedings of Beltwide Cotton Production Research Conferences. National Cotton Council of America, Memphis, TN

    Google Scholar 

  • Luo Q, Bange M, Johnston D, Braunack M (2015) Cotton crop water use and water use efficiency in a changing climate. Agric Ecosyst Environ 202:126–134

    Article  Google Scholar 

  • Lüthen H (2015) What we can learn from old auxinology. J Plant Growth Regul 34:702–707

    Article  CAS  Google Scholar 

  • Makhdum I, Shababuddin M (2006) Effect of different doses of glycine betaine and time of spray application on yield of cotton (Gossypium hirsutum L.). J Res (Sci) 17:241–245

    Google Scholar 

  • Makhdum I, Nawaz A, Shabab M, Ahmad F, Illahi F (2002) Physiological response of cotton to methanol foliar application. J Res (Sci) 13:37–43

    Google Scholar 

  • Makhdum M, Shababuddin I, Ahmad F (2006) Effect of exogenous application of glycinebetaine on water relations in cotton (Gossypium hirsutum L.) in aridisols. J Sci Technol 30:11–14

    Google Scholar 

  • Manavalan LP, Chen X, Clarke J, Salmeron J, Nguyen HT (2012) RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J Exp Bot 63:163–175

    Article  CAS  PubMed  Google Scholar 

  • Marani A, Levi D (1973) Effect of soil moisture during early stages of development on growth and yield of cotton plants 1. Agron J 65:637–641

    Article  Google Scholar 

  • Marre E (1979) Fusicoccin: a tool in plant physiology. Ann Rev Plant Physiol 30:273–288

    Article  CAS  Google Scholar 

  • Marumo S, Katayama M, Komori E, Ozaki Y, Natsume M, Kondo S (1982) Microbial production of abscisic acid by Botrytis cinerea. Agric Biol Chem 46:1967–1968

    CAS  Google Scholar 

  • McCarty JC Jr, Hedin PA (1994) Effects of 1, 1-dimethylpiperidinium chloride on the yields, agronomic traits, and allelochemicals of cotton (Gossypium hirsutum L.), a nine year study. J Agric Food Chem 42:2302–2304

    Article  CAS  Google Scholar 

  • Mei L, Daud MK, Ullah N, Ali S, Khan M, Malik Z, Zhu SJ (2015) Pretreatment with salicylic acid and ascorbic acid significantly mitigate oxidative stress induced by copper in cotton genotypes. Environ Sci Pollut Res 22:9922–9931

    Article  CAS  Google Scholar 

  • Min L, Li Y, Hu Q, Zhu L, Gao W, Wu Y, Ding Y, Liu S, Yang X, Zhang X (2014) Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol 164:1293–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal A, Gampala SSL, Ritchie GL, Payton P, Burke JJ, Rock CD (2014) Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol J 12:578–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz S (1994) Nutrient uptake and plant physiology enhancement by PHCA treatments on control plants. In: Proceedings of Beltwide Cotton Production Research Conferences. National Cotton Council of America, Memphis, TN

    Google Scholar 

  • Murty P, Raju D, Rao G (1976) Effect of plant growth regulators on flower and boll drop in cotton. Food Farming and Agriculture

    Google Scholar 

  • Nageswara Rao P, Prabhakara Rao J, Amariah M (1980) Research note on effect of Cycocel on MCU-5. Cotton Development

    Google Scholar 

  • Negi L, Singh A (1956) A preliminary study on the effect of some hormones on yield of cotton. Indian Cotton Gr Rev 10:153

    CAS  Google Scholar 

  • Noggle GR, Fritz GJ (1983) Introductory plant physiology. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  • Noreen S (2010) Influence of exogenous application of salicylic acid on physiological and biochemical attributes of sunflower (Helianthus annuus L.) under salinity stress. University of Agriculture Faisalabad, Pakistan

    Google Scholar 

  • Noreen S, Athar HUR, Ashraf M (2013) Interactive effects of watering regimes and exogenously applied osmoprotectants on earliness indices and leaf area index in cotton (Gossypium hirsutum L.) crop. Pak J Bot 45:1873–1881

    Google Scholar 

  • Noreen S, Zafar Z, Shah KH, Athar H, Ashraf M (2015) Assessment of economic benefits of foliarly applied osmoprotectants in alleviating the adverse effects of water stress on growth and yield of cotton (Gossypium hirsutum L.). Pak J.Bot 47:2223–2230

    CAS  Google Scholar 

  • Noreen S, Siddiq A, Hussain K, Ahmad S, Hasanuzzaman M (2017) Foliar application of salicylic acid with salinity stress on physiological and biochemical attributes of sunflower (Helianthus annuus L.) crop. Acta Scientiarum Polonorum-Hortorum Cultus 16:57–74

    Article  Google Scholar 

  • Oosterhuis DM, Zhao D (1994) Increased root length and branching in cotton by soil application of the plant growth regulator PGR-IV. Plant Soil 167:51–56

    Article  CAS  Google Scholar 

  • Parker L, Salk P (1990) Foliar TRIGGER on cotton: a comprehensive statistical review. In: Proceedings – Beltwide Cotton Production Research Conferences USA, pp 659-660

    Google Scholar 

  • Patel JK (1992) Effect of triacontanol and naphthalene acetic acid on lint yield, fibre quality, and nitrogen, phosphorus and potash uptake in cotton (Gossypium species). Indian J Agron 37:332–337

    CAS  Google Scholar 

  • Pervez H, Ashraf M, Makhdum M (2005) Influence of potassium rates and sources on seed cotton yield and yield components of some elite cotton cultivars. J Plant Nutr 27:1295–1317

    Article  CAS  Google Scholar 

  • Pettigrew W, Heitholt J, Meredith W (1992) Early season floral bud removal and cotton growth, yield, and fiber quality. Agron J 84:209–214

    Article  Google Scholar 

  • Phillips J, Herzog G, Nicholson W (1977) Effect of chlordimeform on fruiting characteristics and yield of cotton [Heliothis]. Arkansas Farm Res 26(2):4

    CAS  Google Scholar 

  • Rademacher W (2015) Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul 34:845–872

    Article  CAS  Google Scholar 

  • Radin JW, Parker LL, Sell CR (1978) Partitioning of sugar between growth and nitrate reduction in cotton roots. Plant Physiol 62:550–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  • Rahman MH, Ahmad A, Wang X, Wajid A, Nasim W, Hussain M, Ahmad B, Ahmad I, Ali Z, Ishaque W, Awais M, Shelia V, Ahmad S, Fahad S, Alam M, Ullah H, Hoogenboom G (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agr Forest Meteorol 253-254:94–113

    Article  Google Scholar 

  • Reddy K, Reddy VR, Hodges HF (1992) Temperature effects on early season cotton growth and development. Agron J 84:229–237

    Article  Google Scholar 

  • Reddy KR, Davidonis GH, Johnson AS, Vinyard BT (1999) Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties. Agron J 91:851–858

    Article  Google Scholar 

  • Riaz M, Farooq J, Sakhawat G, Mahmood A, Sadiq MA, Yaseen M (2013) Genotypic variability for root/shoot parameters under water stress in some advanced lines of cotton (Gossypium hirsutum L.). Genet Mol Res 12:552–561

    Article  CAS  PubMed  Google Scholar 

  • Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P (2015) Exploring jasmonates in the hormonal network of drought and salinity responses. Front Plant Sci 6:1077

    Article  PubMed  PubMed Central  Google Scholar 

  • Salisbury F, Ross C (1992) Hormones and growth regulators: auxins and gibberellins. Plant Physiol 4:401–405

    Google Scholar 

  • Sankaranarayanan K, Praharaj CS, Nalayini P, Bandyopadhyay K, Gopalakrishnan N (2010a) Climate change and its impact on cotton (Gossypium sp.). Indian J Agric Sci 80:561–575

    CAS  Google Scholar 

  • Sankaranarayanan K, Praharaj CS, Nalayini P, Bandyopadhyay K, Gopalakrishnan N (2010b) Effect of magnesium, zinc, iron and boron application on yield and quality of cotton (Gossypium hirsutum). Indian J Agric Sci 80:699–703

    CAS  Google Scholar 

  • Sarwar M, Saleem MF, Ullah N, Rizwan M, Ali S, Shahid MR, Alamri SA, Alyemeni MN, Ahmad P (2018) Exogenously applied growth regulators protect the cotton crop from heat-induced injury by modulating plant defense mechanism. Sci Rep 8:17086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sawan Z, Sakr R, El-Kady M (1984) Effect of ethrel treatment on the yield components and fiber properties of the Egyptian cotton. Zeitschrift fur Acker-und Pflanzenbau 153(1):72–78

    Google Scholar 

  • Scott JC (1990) Domination and the arts of resistance: hidden transcripts. Yale University Press, New Haven, p 269

    Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  CAS  PubMed  Google Scholar 

  • Shallan MA, Hassan HMM, Namich AAM, Ibrahim AA (2012) Effect of sodium nitroprusside, putrescine and glycine betaine on alleviation of drought stress in cotton plant. American-Eurasian J Agric Environ Sci 12:1252–1265

    Google Scholar 

  • Shanmugham K (1992) Seed soaking and foliar application of growth-regulants and anti-transpirant chemicals for increasing drought resistance in rainfed upland cotton (Gossypium hirsutum). Indian J Agric Sci 62:744–750

    CAS  Google Scholar 

  • Sheng C, Hopper K, Meredith W, King E, Ma S (1988) Cotton development, yield, and quality after early square removal with ethephon

    Google Scholar 

  • Shu H, Ni W, Guo S, Gong Y, Shen X, Zhang X, Xu P, Guo Q (2015) Root-applied brassinolide can alleviate the NaCl injuries on cotton. Acta Physiologiae Plantarum 37:75

    Article  CAS  Google Scholar 

  • Singh S (1970) Revolution in cotton yield with CCC. Indian Farming 20:5–6

    Google Scholar 

  • Singh S (1975) Studies on the effects of soil moisture stress on the yield of cotton. Indian J Plant Physiol 18:49

    Google Scholar 

  • Singh S, Singh VV, Choudhary AD (2010) Combining ability estimates for oil content, yield components and fibre quality traits in cotton (G. hirsutum) using an 8× 8 diallel mating design. Trop Subtrop Agroecosyst 12:161–166

    Google Scholar 

  • Sitaram MS, Abraham ES (1973) Note on effect of gibberellic acid on quality of Laxmi cotton. Cotton Growing Rev 50:150–151

    Google Scholar 

  • Snow JP, Crawford SH, Berggren GT, Marshall JG (1981) Growth regulator tested for cotton boll rot control [Pix (NN-Dimethylpiperidinium chloride), Fusarium]. Louisiana Agriculture (USA) 24(3):324

    Google Scholar 

  • Stedman S, Taylor B (1982) The effect of Pix® applications on cotton treated with four levels of nitrogen. In: Brown JM (ed) Proceedings Beltwide Cotton Production Research Conferences. National Cotton Council of America, Memphis, TN

    Google Scholar 

  • Sticher L, Mauch-Mani B, Métraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  CAS  PubMed  Google Scholar 

  • Stiller WN, Read JJ, Constable GA, Reid PE (2005) Selection for water use efficiency traits in a cotton breeding program: cultivar differences. Crop Sci 45:1107–1113

    Article  Google Scholar 

  • Stuart B, Wendt C, Abernathy J (1980) The influence of mepiquat chloride on the plant water status of cotton

    Google Scholar 

  • Subbiah KK, Mariakulandai A (1972) Application of gibberellic acid and naphthalene acetic acid in preventing bud and boll shedding in Cambodia cotton. Madras Agr J 59:350–352

    CAS  Google Scholar 

  • Suttle JC (1988) Disruption of the polar auxin transport system in cotton seedlings following treatment with the defoliant thidiazuron. Plant Physiol 86:241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taha MB, Noakes DE (1982) The effect of age and season of the year on testicular function in the dog, as determined by histological examination of the seminiferous tubules and the estimation of peripheral plasma testosterone concentrations. J Small Anim Pract 23:351–357

    Article  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology, vol 998. Sinauer Associates, Sunderland, p 79

    Google Scholar 

  • Tan J, Tu L, Deng F, Wu R, Zhang X (2012) Exogenous jasmonic acid inhibits cotton fiber elongation. J Plant Growth Regul 31:599–605

    Article  CAS  Google Scholar 

  • Tariq M, Yasmeen A, Ahmad S, Hussain N, Afzal MN, Hasanuzzaman M (2017) Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop Subtrop Agroecosyst 20(2):251–262

    Google Scholar 

  • Tariq M, Afzal MN, Muhammad D, Ahmad S, Shahzad AN, Kiran A, Wakeel A (2018) Relationship of tissue potassium content with yield and fiber quality components of Bt cotton as influenced by potassium application methods. Field Crops Res 229:37–43

    Article  Google Scholar 

  • Taylor A, Cosgrove DJ (1989) Gibberellic acid stimulation of cucumber hypocotyl elongation: effects on growth, turgor, osmotic pressure, and cell wall properties. Plant Physiol 90:1335–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas RO (1964) Effects of application timing and concentration of 2-Chloroethyl trimethylammonium chloride on plant size and fruiting responses of cotton. Crop Sci 4:403–406

    Article  Google Scholar 

  • Thomas R (1967) Effects of two growth retardants on flowering and boll production of greenhouse cotton plants

    Google Scholar 

  • Underbrink SM (1999) Agronomic differences in growth and yield between BT and conventional cotton treated with mepiquat chloride. Texas A&M University

    Google Scholar 

  • Urwiler MJ, Oosterhuis DM (1986) The effect of the growth regulators Pix and IBA on cotton root growth. Arkansas Farm Res 36(6):5

    Google Scholar 

  • Usman M, Ahmad A, Ahmad S, Irshad M, Khaliq T, Wajid A, Hussain K, Nasim W, Chattha TM, Trethowan R, Hoogenboom G (2009) Development and application of crop water stress index for scheduling irrigation in cotton (Gossypium hirsutum L.) under semiarid environment. J Food Agri Environ 7(3&4):386–391

    Google Scholar 

  • van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–205

    Chapter  Google Scholar 

  • Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24:842–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakelyn PJ, Chaudhry MR (2010) Cotton: technology for the 21st century. International Cotton Advisory Committee, 2010, pp 475

    Google Scholar 

  • Walhood V (1958) Effect of gibberellins on yield and growth of cotton

    Google Scholar 

  • Walter H, Gausman H, Rittig F, Namken L, Escobar D, Rodriguez R (1980) Effect of mepiquat chloride on cotton plant leaf and canopy structure and dry weights of its components. In: Proceedings of Beltwide Cotton Production Research

    Google Scholar 

  • Watkins CB (2015) Advances in the use of 1-MCP Advances in postharvest fruit and vegetable technology. CRC Press, Boca Raton, FL, pp 117–145

    Book  Google Scholar 

  • Wright S, Hiron R (1972) The accumulation of abscisic acid in plants during wilting and under other stress conditions. In: Carr DJ (ed) Plant growth substances 1970. Springer, Berlin, pp 291–298

    Chapter  Google Scholar 

  • Wu K (2007) Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China. J Invertebr Pathol 95:220–223

    Article  PubMed  Google Scholar 

  • Xiao S, Liu L, Wang H, Li D, Bai Z, Zhang Y, Sun H, Zhang K, Li C (2019) Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PLoS One 14(6):e0216575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Taylor H (1992) Increase in drought resistance of cotton seedlings treated with mepiquat chloride. Agron J 84:569–574

    Article  CAS  Google Scholar 

  • York A (1983) Cotton cultivar response to mepiquat chloride. Agron J 75:663–667

    Article  CAS  Google Scholar 

  • Youngman RR, Leigh TF, Kerby TA, Toscano NC, Jackson CE (1990) Pesticides and cotton: effect on photosynthesis, growth, and fruiting. J Econ Entomol 83:1549–1557

    Article  CAS  Google Scholar 

  • Zafar ZU, Hussain K, Athar HUR, Noreen S, Ashraf M (2015) Assessment of economic benefits of foliarly applied osmoprotectants in alleviating the adverse effects of water stress on growth and yield of cotton (Gossypium hirsutum L). Pak J Bot 47:2223–2230

    Google Scholar 

  • Zhang F, Romheld V, Marschner H (1991) Release of zinc mobilizing root exudates in different plant species as affected by zinc nutritional status. J Plant Nutr 14:675–686

    Article  CAS  Google Scholar 

  • Zhao D, Oosterhuis DM (2000) Pix plus and mepiquat chloride effects on physiology, growth, and yield of field-grown cotton. J Plant Growth Regul 19:415–422

    Article  CAS  Google Scholar 

  • Ziska LH, Teasdale JR, Bunce JA (1999) Future atmospheric carbon dioxide may increase tolerance to glyphosate. Weed Sci 47(5):608–615

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noreen, S., Mahmood, S., Faiz, S., Akhter, S. (2020). Plant Growth Regulators for Cotton Production in Changing Environment. In: Ahmad, S., Hasanuzzaman, M. (eds) Cotton Production and Uses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1472-2_8

Download citation

Publish with us

Policies and ethics