Skip to main content

Multi-antenna Techniques Utilized in Favor of Radar System: A Review

  • Conference paper
  • First Online:
  • 642 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1040))

Abstract

What is new in a radar system, what advancement is going on, and what may be the road map for future radar system development, this is the question for which authors tried to find out the solution throughout this review. Radar transformation is described in two parts. Like every communication system, analog radar baseband is transformed into digital baseband which is adding the advantage of digital signal processing (DSP) of the transmitted and received signal which helps to improve target parameter characterization. Software-defined radio (SDR) is one of the powerful tools which are heavily used to develop digital radar baseband in recent days. In the second part, single antenna-based old radar system is transformed into multi-antenna-based modern radar which helping to improve signal-to-noise ratio (SNR) in the radar receiver. This front end antenna part is still more or less analog, but several multi-antennas techniques are adding different advantages to the total system. A good amount of signal reception using multi-input multi-output (MIMO) system is helping in target characterization in the digital baseband section in which advance signal processing is working. These days few other multi-antenna techniques like Array antenna, Phased MIMO antenna are becoming popular for improving SNR of the system. In this article all multi-antenna techniques are reviewed to find out the best one in favor of Radar.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Muralidhara, N., Rajesh, B.R.C., Biradar and Jayaramaiah, G.V.: Designing polyphase code for digital pulse compression for surveillance radar. In: 2nd International Conference on Computing and Communications Technologies (ICCCT), Chennai (2017)

    Google Scholar 

  2. Lewis, B.L., Kretschmer, F.F.: A new class of polyphase pulse compression codes and techniques. In: IEEE transactions on aerospace and electronic systems AES-17, pp. 364–372. https://doi.org/10.1109/taes.1981.309063 (1981)

    Article  MathSciNet  Google Scholar 

  3. Costanzo, S., Spadafora, F., Borgia, A., Moreno, H.O., Costanzo, A., Di Massa, G.: High resolution software defined radar system for target detection. J. Electr. Comput. Eng. 2013, 7. Article ID 573217 (2013). https://doi.org/10.1155/2013/573217

    MathSciNet  Google Scholar 

  4. El-Din Ismail, N., Mahmoud, S.H., Hafez, A.S., Reda, T.: A new phased MIMO radar partitioning schemes. IEEE Aerospace Conference, Big Sky, MT (2014)

    Google Scholar 

  5. Patole, S.M., Torlak, M., Wang, D., Ali, M.: Automotive radars: a review of signal processing techniques. IEEE Signal Processing Magazine 34(2), 22–35 (2017). https://doi.org/10.1109/msp.2016.2628914

    Article  Google Scholar 

  6. Study Paper on Multiple-Input Multiple-Output (MIMO) Technology. Source http://tec.gov.in/pdf/Studypaper/Test%20Procedure%20EM%20Fields%20From%20BTS%20Antennae.pdf

  7. Fishler, E., Haimovich, A., Blum, R., Cimini, L.J., Chizhik, D., Valenzuela, R.A.: Spatial diversity in radars: models and detection performance. IEEE Trans. Sign. Process. 54(3), 823–838 (2006)

    Article  Google Scholar 

  8. Bekkerman, I., Tabrikian, J.: Target detection and localization using MIMO radars and sonars. IEEE Trans. Sign. Process. 54(10), 3873–3883 (2006)

    Article  Google Scholar 

  9. Kpre, E.L., Decrozel, C., Fromenteze, T.: MIMO radar pseudo-orthogonal waveform generation by a passive 1 × M mode-mixing microwave cavity. Int. J. Microw. Wirel. Technol. 9(7), 1357–1363 (2017). https://doi.org/10.1017/s175907871700023x

    Article  Google Scholar 

  10. Fenn, A., Temme, D.H., Delaney, W.P., Courtney, W.: The development of phased-array radar technology (2000)

    Google Scholar 

  11. Butler, J., Lowe, R.: Beam-forming matrix simplifies design of electronically scanned antennas. Electron. Des. 9, 170–173 (1961)

    Google Scholar 

  12. Satyanarayana, S.: Multi-function phased array radar. Source https://www.slideshare.net/mistral_solutions/multifunction-phased-array-radar

  13. Vera-Dimas, J.G., Tecpoyotl-Torres, M., Vargas-Chable, P., Damián-Morales, J.A., Escobedo-Alatorre, J., Koshevaya, S.: Individual patch antenna and antenna patch array for wi-fi communication. Center for Research of Engineering and Applied Sciences (CIICAp), Autonomous University of Morelos State (UAEM), 62209, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca, Morelos, México (2010)

    Google Scholar 

  14. Ghosh, C.K., Parui, S.K.: Design, analysis and optimization of a slotted microstrip patch antenna array at frequency 5.25 GHz for WLAN-SDMA system. Int J Electr Eng Inform 2(2), 106 (2010)

    Google Scholar 

  15. Hassanien, A., Vorobyov, S.A.: Why the phased-MIMO radar outperforms the phased-array and MIMO radars. In: 2010 18th European Signal Processing Conference, pp. 1234–1238. Aalborg (2010). Keywords (array signal processing; MIMO radar; phased array radar; radar signal processing; phased array; multiple input multiple output; signal to noise ratio; SNR analysis; phased MIMO radar beam pattern; processing gain; transmit beamforming; MIMO radar; Signal to noise ratio; Radar antennas; Arrays; MIMO; Array signal processing). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7096493&isnumber=7065143

  16. Fuhrmann, D.R., Browning, J.P., Rangaswamy, M.: Signaling strategies for the hybrid MIMO phased-array radar. IEEE J. Select. Topics Sign. Process. 4(1), 66–78 (2010)

    Article  Google Scholar 

  17. Monterey, California.: Distributed subarray antennas for multifunction phased-array radar. Master of Science in System Engineering, Naval Postgraduate School September 2003

    Google Scholar 

  18. Fu, H, Fang, H, Cao, Lu, S.M.: Study on the comparison between MIMO and phased array antenna. In: IEEE Symposium on Electrical and Electronics Engineering (EEESYM), Kuala Lumpur (2012)

    Google Scholar 

  19. Fuhrmann, D., Antonio, G.: Transmit beamforming for MIMO radar systems using signal cross-correlation. IEEE Trans. Aerosp. Electron. Syst. 44, 171–186 (2008)

    Article  Google Scholar 

  20. Stoica, P., Li, J., Xie, Y.: On probing signal design for MIMO radar. IEEE Trans. Sign. Process. 55, 4151–4161 (2007)

    Article  MathSciNet  Google Scholar 

  21. Haykin, S., Litva, J., Shepherd, T.J.: Radar Array Processing. Springer, New York (1993)

    Book  Google Scholar 

  22. Van Trees, H.L.: Optimum Array Processing. Wiley-Interscience, New York (2002)

    Book  Google Scholar 

  23. Hassanien, A., Vorobyov, S.A.: Transmit/receive beamforming for MIMO radar with colocated antennas. In: 2009 IEEE International Conference on Speech, Signal Processing (ICASSP’09), pp. 2089–2092. Taipei, Taiwan, Apr 2009

    Google Scholar 

  24. Ismail, N., Hanafy, Sherif & Alieldin, Ahmed & Hafez, Alaa. (2015). Design and analysis of a phased-MIMIO array antenna with frequency diversity, pp. 1745–1750

    Google Scholar 

  25. Mucci, R.: A comparison of efficient beamforming algorithms. IEEE Trans. Acoust. Speech Sign. Process. 32(3), 548 (1984)

    Article  Google Scholar 

  26. A flexible phased-MIMO array antenna with transmit beamforming—scientific figure on research gate. Available from https://www.researchgate.net/figure/Illustration-of-the-flexible-phased-MIMO-antenna-array_fig3_258385610. Accessed 18 Jun 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhankar Shome .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shome, S., Bera, R., Maji, B., Bhoi, A.K., Mallick, P.K. (2020). Multi-antenna Techniques Utilized in Favor of Radar System: A Review. In: Mallick, P., Balas, V., Bhoi, A., Chae, GS. (eds) Cognitive Informatics and Soft Computing. Advances in Intelligent Systems and Computing, vol 1040. Springer, Singapore. https://doi.org/10.1007/978-981-15-1451-7_40

Download citation

Publish with us

Policies and ethics