Skip to main content

The Holocene, the Anthropocene, and the Planetary Boundaries

  • Chapter
  • First Online:
Planetary Accounting

Abstract

People have been trying to determine environmental limits for the planet since as early as the 1600s. However, this task is inherently difficult as it requires a high level of value judgement. Assumptions regarding lifestyle, technology, and population underpin most past attempts to determine planetary limits.

The Holocene is the period of time that started 11,650 years ago. This is only a small fraction of human history which can be traced back 300,000 years. Prior to the Holocene, the climate was highly variable. Humans lived as hunter-gatherers moving from place to place to survive. The Holocene was an unusually stable and warm period in human history. In this nurturing environment, humans developed from hunter-gatherers to urban and agricultural settled societies. The Holocene is the only state in which we know humanity can thrive with anything like the 7.5 billion humans being supported today.

We have now left the Holocene and are in the transition to the Anthropocene. This new geological epoch was named to acknowledge human influence on the state of the planet. The state of the planet in the Anthropocene is not yet determined, but at current trends in human activity, predictions are for a much hotter and less stable climate, a “hot-house Earth” scenario.

In 2009, the Planetary Boundaries were proposed. These are environmental limits for the planet within which the climate and other environmental conditions in the Anthropocene are likely to resemble those of the Holocene. There are no assumptions regarding lifestyle, technology, or population underpinning the Planetary Boundaries. The limits are based on the latest scientific understanding of the planet’s environmental processes. At least four of the Planetary Boundaries have been exceeded.

It would be prudent for humans to try to return to and operate within the Planetary Boundaries so that the risk is low of changing the state of the planet from a Holocene-like state which is favourable to humanity and especially to the kind of civilization based on cities and agriculture, to one where substantial collapse of the population is likely.

There is no planet B

Richard Branson

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akenji L, Bengtsson M, Bleischwitz R, Tukker A, Schandl H (2016) Ossified materialism: introduction to the special volume on absolute reductions in materials throughput and emissions. J Clean Prod 132:1

    Google Scholar 

  • Alcott B (2010) Impact caps: why population, affluence and technology strategies should be abandoned. J Clean Prod 18:552–560

    Article  Google Scholar 

  • Azar C, Holmberg J, Lindgren K (1996) Socio-ecological indicators for sustainability. Ecol Econ 18:89–112

    Article  Google Scholar 

  • Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND, Mooers A, Roopnarine P, Vermeij G, Williams JW, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell DP, Revilla E, Smith AB (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58

    Article  CAS  Google Scholar 

  • Bass S (2009) Planetary boundaries: keep off the grass. Nat Rep Clim Change 3:113

    Article  Google Scholar 

  • Berger A, Loutre MF (2002) An exceptionally long interglacial ahead? Science 297:1287–1288

    Article  CAS  Google Scholar 

  • Biello D (2012) Walking the line: how to identify safe limits for human impacts on the planet. Available: http://www.scientificamerican.com/article/do-planetary-boundaries-help-humanity-manage-environmental-impacts/. Accessed 8 Jun 2016

  • Bocquet-Appel J-P (2011) When the world’s population took off: the springboard of the neolithic demographic transition. Science 333:560

    Article  CAS  Google Scholar 

  • Brito L (2012) Analyzing sustainable development goals. Science (New York, NY) 336:1396

    Article  Google Scholar 

  • Broman G, Holmberg J, Robört K-H (2000) Simplicity without reduction: thinking upstream towards the sustainable society. Interfaces 30:13–25

    Article  Google Scholar 

  • Carpenter SR, Bennett EM (2011) Reconsideration of the planetary boundary for phosphorus. Environ Res Lett 6:014009

    Article  Google Scholar 

  • Cohen JE (1995) How many people can the earth support? Norton, New York, NY

    Google Scholar 

  • Cole MJ, Bailey RM, New MG (2014) Tracking sustainable development with a national barometer for South Africa using a downscaled “safe and just space” framework. Proc Natl Acad Sci U S A 111:E4399–E4408

    Article  CAS  Google Scholar 

  • Cook M (2005) A brief history of the human race. Granta, London

    Google Scholar 

  • Crutzen PJ (2002) Geology of mankind. Nature 415:23

    Article  CAS  Google Scholar 

  • Daly HE (1990) Toward some operational principles of sustainable development. Ecol Econ 2:1–6

    Article  Google Scholar 

  • De Vries W, Kros J, Kroeze C, Seitzinger SP (2013) Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr Opin Environ Sustain 5:392–402

    Article  Google Scholar 

  • EEA (2011) Roadmap to a resource efficient Europe. European Environment Agency, Copenhagen

    Google Scholar 

  • Ehrlich PR (1971) The population bomb. Pan Books, London

    Google Scholar 

  • Ehrlich PR, Holdren JP (1971) Impact of population growth. Science 171:1212–1217

    Article  CAS  Google Scholar 

  • Ekins P, Simon S, Deutsch L, Folke C, De Groot R (2003) A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecol Econ 44:165–185

    Article  Google Scholar 

  • European Commission (2012) Proposal for a decision of the European parliament and of the council on a General Union Environment Action Programme to 2020 “Living well, within the limits of our planet”. Off J Eur Union L354:171

    Google Scholar 

  • Ewen C (2017) Oldest Homo sapiens fossil claim rewrites our species’ history. Nature News

    Google Scholar 

  • Ewing B, Moore D, Goldfinger S, Ourslet A, Reed A, Wackernagel M (2010) Ecological footprint atlas 2010. Global Footprint Network, Oakland, CA

    Google Scholar 

  • F.N.L.P (1962) The collected letters of Antoni van Leeuzwenhoek. Edited, illustrated and annotated by a Commission of Dutch Scientists. Vol. VI. Amsterdam: Swets and Zeitlinger Ltd., 1961; pp. 12, 425; 34 plates. C8 15s. od. Med Hist 6:198

    Google Scholar 

  • Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74

    Article  Google Scholar 

  • Franck S, Von Bloh W, Müller C, Bondeau A, Sakschewski B (2011) Harvesting the sun: new estimations of the maximum population of planet Earth. Ecol Model 222:2019–2026

    Article  Google Scholar 

  • Galaz V (2014) Global environmental governance, technology and politics: the Anthropocene gap. Edward Elgar, Cheltenham

    Book  Google Scholar 

  • Galaz V, Biermann F, Crona B, Loorbach D, Folke C, Olsson P, Nilsson M, Allouche J, Persson Å, Reischl G (2012a) ‘Planetary boundaries’—exploring the challenges for global environmental governance. Curr Opin Environ Sustain 4:80–87

    Article  Google Scholar 

  • Galaz V, Biermann F, Folke C, Nilsson M, Olsson P (2012b) Global environmental governance and planetary boundaries: an introduction. Ecol Econ 81:1

    Article  Google Scholar 

  • Galaz V, Crona B, Österblom H, Olsson P, Folke C (2012c) Polycentric systems and interacting planetary boundaries - emerging governance of climate change-ocean acidification-marine biodiversity. Ecol Econ 81:21–32

    Article  Google Scholar 

  • Galli A, Wackernagel M, Iha K, Lazarus E (2014) Ecological footprint: implications for biodiversity. Biol Conserv 173:121–132

    Article  Google Scholar 

  • Gerten D, Hoff H, Rockström J, Jägermeyr J, Kummu M, Pastor AV (2013) Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements. Curr Opin Environ Sustain 5:551–558

    Article  Google Scholar 

  • Global Footprint Network (2012) Glossary. Available: http://www.footprintnetwork.org/en/index.php/GFN/page/glossary

  • Global Footprint Network (2019) Footprint calculator. Available: http://www.footprintcalculator.org/. Accessed 24 Feb 2019

  • Goodland R, Daly H (1996) Environmental sustainability: universal and non-negotiable. Ecol Appl 6:1002–1017

    Article  Google Scholar 

  • Griggs D (2013) Sustainable development goals for people and planet. Nature 495:305–307

    Article  CAS  Google Scholar 

  • Häyhä T, Lucas PL, Van Vuuren DP, Cornell SE, Hoff H (2016) From planetary boundaries to national fair shares of the global safe operating space—how can the scales be bridged? Glob Environ Chang 40:60–72

    Article  Google Scholar 

  • Hoekstra AY (2009) Human appropriation of natural capital: a comparison of ecological footprint and water footprint analysis. Ecol Econ 68:1963–1974

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge; New York, NY

    Google Scholar 

  • IPCC (2013a) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge; New York, NY

    Google Scholar 

  • IPCC (2013b) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge; New York, NY

    Google Scholar 

  • Jouzel J, Masson-Delmotte V (2007) EPICA Dome C Ice Core 800KYr deuterium data and temperature estimates. Supplement to: Jouzel, Jean; Masson-Delmotte, Valerie; Cattani, Olivier; Dreyfus, Gabrielle; Falourd, Sonia; Hoffmann, G; Minster, B; Nouet, J; Barnola, Jean-Marc; Chappellaz, Jérôme A; Fischer, Hubertus; Gallet, J C; Johnsen, Sigfus J; Leuenberger, Markus; Loulergue, Laetitia; Luethi, D; Oerter, Hans; Parrenin, Frédéric; Raisbeck, Grant M; Raynaud, Dominique; Schilt, Adrian; Schwander, Jakob; Selmo, Enrico; Souchez, Roland; Spahni, Renato; Stauffer, Bernhard; Steffensen, Jørgen Peder; Stenni, Barbara; Stocker, Thomas F; Tison, Jean-Louis; Werner, Martin; Wolff, Eric W (2007). Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317(5839), 793–797, doi: 10.1126/science.1141038. PANGAEA

    Google Scholar 

  • Kukla GJ, Mattews RK, Mitchell JM Jr (1972) The end of the present interglacial. Quatern Res 2:261–269

    Article  Google Scholar 

  • Lewis S (2012) We must set planetary boundaries wisely. Nature 485:417

    Article  CAS  Google Scholar 

  • Lewis S, Maslin M (2015) Defining the Anthropocene. Nature 519:171–180

    Article  CAS  Google Scholar 

  • Mace GM, Reyers B, Alkemade R, Biggs R, Chapin FS, Cornell SE, Díaz S, Jennings S, Leadley P, Mumby PJ, Purvis A, Scholes RJ, Seddon AWR, Solan M, Steffen W, Woodward G (2014) Approaches to defining a planetary boundary for biodiversity. Glob Environ Chang 28:289–297

    Article  Google Scholar 

  • Malthus T (1798) An essay on the principle of population. J. Johnson, London

    Google Scholar 

  • Margules CR, Nicholls AO, Pressey RL (1988) Selecting networks of reserves to maximise biological diversity. Biol Conserv 43:63–76

    Article  Google Scholar 

  • Mario JM (2009) Planetary boundaries: identifying abrupt change. Nat Rep Clim Change 1:115

    Article  Google Scholar 

  • Meadows DH, Meadows DL, Randers J, Behrens WW III (1972) The limits to growth: a report for the Club of Rome’s project on the predicament of mankind. Universe Books, New York, NY

    Google Scholar 

  • Molden D (2009) Planetary boundaries: the devil is in the detail. Nat Rep Clim Change 1:116

    Article  Google Scholar 

  • NOAA (2018) Trends in atmospheric carbon dioxide. Available: https://www.esrl.noaa.gov/gmd/ccgg/trends/monthly.html. Accessed 15 May 2018

  • Nordhaus WD, Tobin J (1971) Is growth obsolete? Cowles Foundation for Research in Economics, Yale University

    Google Scholar 

  • Odum EP (1989) Ecology and our endangered life-support systems. Sinauer, Stanford, CT

    Google Scholar 

  • Oxford Dictionaries (2014) English dictionary. Oxford University Press, Oxford. Available: http://www.oxforddictionaries.com/. Accessed 16 Jul 2014

    Google Scholar 

  • Paul JC (2002) Geology of mankind. Nature 415:23

    Article  Google Scholar 

  • Petschel-Held G, Schellnhuber HJ, Bruckner T, Tóth FL, Hasselmann K (1999) The tolerable windows approach: theoretical and methodological foundations. Clim Change 41:303–331

    Article  CAS  Google Scholar 

  • Pisano U, Berger G (2013) Planetary boundaries for SD: from an international perspective to national applications. European Sustainable Development Network, Vienna

    Google Scholar 

  • Raworth K (2012) A safe and just space for humanity: can we live within the doughnut? Oxfam discussion paper. Oxfam, Oxford

    Google Scholar 

  • Rees WE (1992) Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environ Urbaniz 4:121–130

    Article  Google Scholar 

  • Robèrt KH, Broman GI, Basile G (2013) Analyzing the concept of planetary boundaries from a strategic sustainability perspective: how does humanity avoid tipping the planet? Ecol Soc 18:5

    Article  Google Scholar 

  • Rockström J (2010) Let the environment guide our development. TED

    Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, De Wit CA, Hughes T, Van Der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J (2009a) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14:32

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, De Wit CA, Hughes T, Van Der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009b) A safe operating space for humanity. Nature 461:472–475

    Article  Google Scholar 

  • Running S (2012) A measurable planetary boundary for the biosphere. Science 337:1458–1459

    Article  CAS  Google Scholar 

  • SDSN (2013) An action agenda for sustainable development. Report for the UN Secretary-General. Sustainable Development Solutions Network, Paris

    Google Scholar 

  • Severinghaus JP, Sowers T, Brook EJ, Alley RB, Bender ML (1998) Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391:141

    Article  CAS  Google Scholar 

  • Soulé ME, Sanjayan MA (1998) Ecology: conservation targets: do they help? Science (New York, NY) 279:2060

    Article  Google Scholar 

  • Spreckley F (1987) Social audit: a management tool for co-operative working. Beechwood College, Leeds

    Google Scholar 

  • Steffen W, Stafford Smith M (2013) Planetary boundaries, equity and global sustainability: why wealthy countries could benefit from more equity. Curr Opin Environ Sustain 5:403–408

    Article  Google Scholar 

  • Steffen W, Sanderson A, Tyson P, Jäger J, Matson P, Moore B, Oldfield F, Katherine R, John Schellnhuber H, Turner BL, Wasson RJ (2005) Global change and the earth system: a planet under pressure. Springer, Berlin

    Book  Google Scholar 

  • Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, De Vries W, De Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855

    Article  Google Scholar 

  • Steffen W, Rockström J, Richardson K, Lenton TM, Folke C, Liverman D, Summerhayes CP, Barnosky AD, Cornell SE, Crucifix M, Donges JF, Fetzer I, Lade SJ, Scheffer M, Winkelmann R, Schellnhuber HJ (2018) Trajectories of the Earth system in the anthropocene. Proc Natl Acad Sci 115:8252–8259

    Article  CAS  Google Scholar 

  • Symons J, Karlsson R (2015) Green political theory in a climate-changed world: between innovation and restraint. Environ Polit 24:173–192

    Article  Google Scholar 

  • The Brundtland Commission (1987) Our common future. World Commission on Environment and Development. Oxford University Press, Oxford

    Google Scholar 

  • Trenberth K (2002) Volume 1, The Earth system: physical and chemical dimensions of global environmental change. In: MacCracken MC, Perry JS (eds) Encyclopedia of global environmental change. John Wiley & Sons, Ltd, Chichester

    Google Scholar 

  • UN (2012) Resilientpeople, resilient planet: a future worth choosing. United Nations, New York, NY

    Google Scholar 

  • UNEP (2013) Embedding the environment in sustainable development goals. In: UNEP post-2015 discussion paper 1. United Nations Environment Programme, Nairobi

    Google Scholar 

  • Vale R, Vale B (2013) Living within a fair share ecological footprint. Routledge, New York, NY

    Book  Google Scholar 

  • Van Vuuren DP, Lucas PL, Häyhä T, Cornell SE, Stafford-Smith M (2016) Horses for courses: analytical tools to explore planetary boundaries. Earth Syst Dynam 7:267–279

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Wackernagel M, Rees WE (1996) Our ecological footprint: reducing human impact on the earth; illustrated by Phil Testemale. New Society, Philadelphia, PA

    Google Scholar 

  • Wackernagel M, Schulz NB, Deumling D, Linares AC, Jenkins M, Kapos V, Monfreda C, Loh J, Myers N, Norgaard R, Randers J (2002) Tracking the ecological overshoot of the human economy. Proc Natl Acad Sci U S A 99:9266–9271

    Article  CAS  Google Scholar 

  • WBGU (1995) Scenario for the derivation of global CO2-reduction targets and implementation strategies. WBGU, Bremerhaven

    Google Scholar 

  • WBGU (2001) Conservation and sustainable use of the biosphere. Earthscan, London

    Google Scholar 

  • WBGU (2005) World in transition: fighting poverty through environmental policy. Earthscan, London

    Google Scholar 

  • WBGU (2006) The future oceans – warming up, rising high, turning sour. WBGU, Berlin

    Google Scholar 

  • WBGU (2011) World in transition: a social contract for sustainability. WBGU, Berlin

    Google Scholar 

  • WBGU (2014) Human progress within planetary guardrails: a contribution to the SDG debate. Policy paper 8. WBGU, Berlin

    Google Scholar 

  • Zalasiewicz J, Williams M, Haywood A, Ellis M (2011) The Anthropocene: a new epoch of geological time? Philos Trans R Soc A Math Phys Eng Sci 369:835–841

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meyer, K., Newman, P. (2020). The Holocene, the Anthropocene, and the Planetary Boundaries. In: Planetary Accounting. Springer, Singapore. https://doi.org/10.1007/978-981-15-1443-2_3

Download citation

Publish with us

Policies and ethics