Skip to main content

A Quota for Aerosols

  • 339 Accesses

Abstract

Aerosols are small particles suspended in the atmosphere. They can absorb and scatter light and change cloud formations. They have both warming and cooling impacts, but, overall, the impacts are cooling. They dampen the warming impacts of fossil fuel emissions. However, they can be very harmful to human health.

Until now there has not been an indicator that could link human activity to the abundance of aerosols in the atmosphere. This is because the pathways from the emission of aerosols and precursor gases to aerosols vary greatly and are influenced by several environmental factors such as temperature, humidity, and air movement. However, without a way to even approximate this relationship, it is difficult to effectively manage or limit the source of the emissions.

A new indicator is thus proposed to link the emission of aerosols and precursor gases to aerosol abundance. It is a measure of the equivalent aerosol abundance if emissions occurred at a global scale, in the unit aerosol optical depth equivalent.

The new indicator is not intended to estimate the local state of the environment after emissions. Rather, the intent is that the emissions related to an activity can be compared to another activity and to scientific limits at local and global scales.

The Planetary Quota for aerosols is aerosol optical depth equivalent between 0.04 and 0.1. This can be compared to the “aerosol footprint” of any scale of human activity. The limit is set on the basis of balancing the need to retain some cooling effects to offset global warming, as well as the need for clean air for the health of humans and other species.

Air pollution is turning Mother Nature prematurely grey

Irv Kupcinet

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-15-1443-2_12
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-981-15-1443-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Notes

  1. 1.

    A pressure level means at the level of environmental flows, i.e. the emission of aerosols and precursor gases. See Chap. 4 for a description of different categories of environmental indicators including states and pressures.

  2. 2.

    Manuscript in preparation.

  3. 3.

    Determining the appropriate area will depend on the allocation procedure selected for downscaling the global quotas. See Chap. 17 for more on allocation procedures.

References

  • Alpert P, Kishcha P (2008) Quantification of the effect of urbanization on solar dimming. Geophys Res Lett 35:L08801

    CrossRef  Google Scholar 

  • Andersson SM, Martinsson BG, Vernier J-P, Friberg J, Brenninkmeijer CAM, Hermann M, Van Velthoven PFJ, Zahn A (2015) Significant radiative impact of volcanic aerosol in the lowermost stratosphere. Nat Commun 6:7692

    CrossRef  Google Scholar 

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, B S, Zhang XY (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, X Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Bryson RA (2009) The lessons of climatic history. Environ Conserv 2:163–170

    CrossRef  Google Scholar 

  • Chin M (2009) Atmospheric aerosol properties and climate impacts. Diane Publishing, Collingdale, PA

    Google Scholar 

  • Chin M, Ginoux P, Kinne S, Torres O, Holben B, Duncan B, Martin R, Logan J, Higurashi A, Nakajima T (2002) Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. J Atmos Sci 59:461–483

    CrossRef  Google Scholar 

  • Chin M, Diehl T, Tan Q, Prospero JM, Kahn RA, Remer LA, Yu H, Sayer AM, Bian H, Geogdzhayev IV, Holben BN, Howell SG, Huebert BJ, Hsu NC, Kim D, Kucsera TL, Levy RC, Mishchenko MI, Pan X, Quinn PK, Schuster GL, Streets DG, Strode SA, Torres O, Zhao XP (2014) Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmos Chem Phys 14:3657–3690

    CrossRef  Google Scholar 

  • Creutzig F, Cruz-Núñez X, D’agosto M, Dimitriu D, Figueroa Meza MJ, Fulton L, Kobayashi S, Lah O, Mckinnon A, Newman P, Ouyang M, Schauer JJ, Sperling D, Tiwari G (2014) Transport. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, Von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Engel-Cox JA, Holloman CH, Coutant BW, Hoff RM (2004) Qualitative and quantitative evaluation of Modis satellite sensor data for regional and urban scale air quality. Atmos Environ 38:2495–2509

    CAS  CrossRef  Google Scholar 

  • Fantke P, Jolliet O, Evans JS, Apte JS, Cohen AJ, Hänninen OO, Hurley F, Jantunen MJ, Jerrett M, Levy JI, Loh MM, Marshall JD, Miller BG, Preiss P, Spadaro JV, Tainio M, Tuomisto JT, Weschler CJ, Mckone TE (2015) Health effects of fine particulate matter in life cycle impact assessment: findings from the Basel Guidance Workshop. Int J Life Cycle Assess 20:276–288

    CAS  CrossRef  Google Scholar 

  • Gronlund C, Humbert S, Shaked S, O’Neill M, Jolliet O (2015) Characterizing the burden of disease of particulate matter for life cycle impact assessment. Int J 8:29–46

    CAS  Google Scholar 

  • Gupta P, Christopher SA (2009) Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: multiple regression approach. J Geophys Res 114:D14205. https://doi.org/10.1029/2008JD011496

    CAS  CrossRef  Google Scholar 

  • Gupta P, Christopher SA, Wang J, Gehrig R, Lee Y, Kumar N (2006) Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos Environ 40:5880–5892

    CAS  CrossRef  Google Scholar 

  • Gupta P, Khan MN, da Silva A, Patadia F (2013) Modis aerosol optical depth observations over urban areas in Pakistan: quantity and quality of the data for air quality monitoring. Atmos Pollut Res 4:43–52

    CrossRef  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcings. J Geophys Res Atmos 110

    Google Scholar 

  • Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249:85–101

    CAS  CrossRef  Google Scholar 

  • Humbert S, Marshall JD, Shaked S, Spadaro JV, Nishioka Y, Preiss P, Mckone TE, Horvath A, Jolliet O (2011) Intake fraction for particulate matter: recommendations for life cycle impact assessment. Environ Sci Technol 45:4808

    CAS  CrossRef  Google Scholar 

  • IPCC (2013) Annex II: climate system scenario tables. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Almazroa MA, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT-A, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FGR, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, KhanG Y-H, Khatibzadeh S, Khoo J-P, Kok C (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380:2224–2260

    CrossRef  Google Scholar 

  • Lippmann M, Chen L-C (2009) Health effects of concentrated ambient air particulate matter (CAPs) and its components. Taylor & Francis, Boca Raton

    CrossRef  Google Scholar 

  • Liu Y, Park RJ, Jacob DJ, Li Q, Kilaru V, Sarnat JA (2004) Mapping annual mean ground-level PM 2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States. J Geophys Res Atmos 109

    Google Scholar 

  • Meyer K (2018) Planetary quotas and the planetary accounting framework—comparing human activity to global environmental limits. PhD, Curtin

    Google Scholar 

  • Meyer K, Newman P (2018) The planetary accounting framework: a novel, quota-based approach to understanding the planetary impacts of any scale of human activity in the context of the Planetary Boundaries. Sustainable Earth 1

    Google Scholar 

  • Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • NOAA (n.d.) Surfrad aerosol optical depth. http://www.esrl.noaa.gov/gmd/grad/surfrad/aod/. Accessed 4 Oct 2016

  • Rasool SI, Schneider SH (1971) Atmospheric carbon dioxide and aerosols: effects of large increases on global climate. Science 173:138–141

    CAS  CrossRef  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, De Wit CA, Hughes T, Van Der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J (2009) Planetary boundaries: exploring the safe operating space for humanity—supplementary information. Ecol Soc 14

    Google Scholar 

  • Ryberg MW, Owsianiak M, Richardson K, Hauschild MZ (2018) Development of a life-cycle impact assessment methodology linked to the Planetary Boundaries framework. Ecol Indic 88:250–262

    CrossRef  Google Scholar 

  • Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depths, 1850–1990. J Geophys Res Atmos 98:22987–22994

    CrossRef  Google Scholar 

  • Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, De Vries W, De Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:736

    CAS  CrossRef  Google Scholar 

  • Van Donkelaar A, Martin RV, Brauer M, Kahn R, Levy R, Verduzco C, Villeneuve PJ (2010) Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ Health Perspect 118:847

    CrossRef  Google Scholar 

  • WHO (2016) Ambient air pollution: a global assessment of exposure and burden of disease. World Health Organisation Press, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Meyer, K., Newman, P. (2020). A Quota for Aerosols. In: Planetary Accounting. Springer, Singapore. https://doi.org/10.1007/978-981-15-1443-2_12

Download citation