Skip to main content

Performance of Surface Modified Pineapple Leaf Fiber and Its Applications

  • Chapter
  • First Online:
Pineapple Leaf Fibers

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Development of pineapple leaf fiber (PALF)-based polymer composites has gain interests due to sustainable and environmental benefits when compared with synthetic-based non-degradable fibers. However, the hydrophilic PALF has poor interfacial bonding with the thermosetting and thermoplastic polymers which are hydrophobic. Moreover, this hydrophilic nature of PLAF leads to more moisture absorption rate, which results in degradation of overall properties. This issue can be addressed by modifying the surface of the fibers. Therefore, a comprehensive understanding of the effect of fiber surface modification on various properties and adhesion with polymers is a key for improving the performance of the PALF and its composites. In this context, the performance of surface modified PALF and its applications are elaborately discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khalil HSA, Alwani MS, Omar AKM (2006) Chemical composition, anatomy, lignin distribution and cell wall structure of Malaysian plant waste fiber. BioResources 1:220–232

    Google Scholar 

  2. Alawar A, Hamed AM, Al-Kaabi K (2009) Characterization of treated date palm tree fiber as composite reinforcement. Compos Part B 40(7):601–606

    Article  Google Scholar 

  3. Ariffin A, Yusof Y (2017) Effect of extraction process and surface treatment on the mechanical properties in pineapple leaf fibre. MATEC Web Conf 135:00042

    Article  Google Scholar 

  4. Asim M, Abdan K, Jawaid M et al (2015) A review on pineapple leaves fibre and its composites. Int J Polym Sci 2015:1–16

    Article  Google Scholar 

  5. Asim M, Jawaid M, Abdan K et al (2018) Effect of Alkali treatments on physical and mechanical strength of pineapple leaf fibres. IOP Conf Ser Mater Sci Eng 290(1):012030

    Article  Google Scholar 

  6. Basu A, Chellamani KP, Kumar PR (2003) Jute and pineapple leaf fibres for the manufacture of technical textiles. Asian Text J 12:94–96

    Google Scholar 

  7. Bhaduri SK, Sen SK, Dasgupta PC (1983) Structural studies of an acidic polysaccharide isolated from the leaf fibre of pineapple (Ananas comosus MERR). Carbohydr Res 121:211–220

    Article  CAS  Google Scholar 

  8. Cherian BM, Leão AL, de Souza SF et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86(4):1790–1798

    Article  CAS  Google Scholar 

  9. George J, Bhagawan SS, Thomas S (1997) Improved interactions in chemically modified pineapple leaf fiber reinforced polyethylene composites. Compos Interfaces 5(3):201–223

    Article  Google Scholar 

  10. Hayavadana J, Jacob M, Sampath G (2003) Diversified product of pine apple leaf fibres. Man Made Text India 46:301–305

    CAS  Google Scholar 

  11. Izani MN, Paridah MT, Anwar UMK et al (2013) Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Compos Part B Eng 45(1):1251–1257

    Article  Google Scholar 

  12. Jain NK, Gupta MK (2018) Hybrid teak/sal wood flour reinforced composites: mechanical, thermal and water absorption properties. Mater Res Exp 5(12):125306

    Article  Google Scholar 

  13. Jawaid MHPS, Khalil HA (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86(1):1–18

    Article  CAS  Google Scholar 

  14. John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207

    Article  CAS  Google Scholar 

  15. Jose S, Das R, Mustafa I, Karmakar S et al (2019) Potentiality of Indian pineapple leaf fiber for apparels. J Nat Fib 16(4):536–544

    Article  CAS  Google Scholar 

  16. Jose S, Salim R, Ammayappan L (2016) An overview on production, properties, and value addition of pineapple leaf fibers (PALF). J Nat Fib 13(3):362–373

    Article  Google Scholar 

  17. Lopattananon N, Panawarangkul K, Sahakaro K et al (2006) Performance of pineapple leaf fiber–natural rubber composites: the effect of fiber surface treatments. J Appl Polym Sci 102(2):1974–1984

    Article  CAS  Google Scholar 

  18. Mishra S, Mohanty AK, Drzal LT et al (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289(11):955–974

    Article  CAS  Google Scholar 

  19. Nadirah WW, Jawaid M, Al Masri AA et al (2012) Cell wall morphology, chemical and thermal analysis of cultivated pineapple leaf fibres for industrial applications. J Polym Environ 20(2):404–411

    Article  Google Scholar 

  20. Nayan NHM, Rahman WAWA, Majid RA (2014) The effect of mercerization process on the structural and morphological properties of pineapple leaf fiber (PALF) pulp. Malaysian J Fundam Appl Sci 10(1)

    Google Scholar 

  21. Negawo TA, Polat Y, Buyuknalcaci FN et al (2019) Mechanical, morphological, structural and dynamic mechanical properties of alkali treated Ensete stem fibers reinforced unsaturated polyester composites. Compos Struct 207:589–597

    Article  Google Scholar 

  22. Rajeshkumar G, Hariharan V, Scalici T (2016) Effect of NaOH treatment on properties of Phoenix sp. Fiber. J Nat Fib 13(6):702–713

    CAS  Google Scholar 

  23. Rajeshkumar G, Hariharan V, Sathishkumar TP (2016) Characterization of Phoenix sp. natural fiber as potential reinforcement of polymer composites. J Ind Text 46(3):667–683

    Article  CAS  Google Scholar 

  24. Rajeshkumar G, Hariharan V, Sathishkumar TP et al (2017) Synergistic effect of fiber content and length on mechanical and water absorption behaviors of Phoenix sp. fiber-reinforced epoxy composites. J Ind Text 47(2):211–232

    Article  CAS  Google Scholar 

  25. Rajeshkumar G (2018) An experimental study on the interdependence of mercerization, moisture absorption and mechanical properties of sustainable Phoenix sp. fibre-reinforced epoxy composites. J Ind Text https://doi.org/10.1177/1528083718811085

  26. Rajeshkumar G, Hariharan V, Saravanakumar SS (2019) Enhancing the free vibration characteristics of epoxy polymers using sustainable Phoenix sp. fiber and nano-clay for machine tool applications. J Nat Fib https://doi.org/10.1080/15440478.2019.1636740

  27. Reddy N, Yang Y (2005) Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol 23(1):22–27

    Article  CAS  Google Scholar 

  28. Samal RK, Bhuyan BL (1994) Chemical modification of lignocellulosic fibers I. Functionality changes and graftcopolymerization of acrylonitrile onto pineapple leaf fibers; their characterization and behavior. J Appl Polym Sci 52(12): 1675–1685

    Google Scholar 

  29. Sapuan SM, Mohamed AR, Siregar JP et al (2011) Pineapple leaf fibers and PALF-Reinforced polymer composites. In Cellulose fibers: bio-and nano-polymer composites, Springer, 325–343

    Google Scholar 

  30. Senthilkumar K, Rajini N, Saba N et al (2019) Effect of Alkali treatment on mechanical and morphological properties of pineapple leaf fibre/polyester composites. J Polym Environ 27(6):1191–1201

    Article  CAS  Google Scholar 

  31. Senthilkumar K, Saba N, Chandrasekar M et al (2019) Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites. Constr Build Mater 195:423–431

    Article  CAS  Google Scholar 

  32. Sinha MK (1982) A review of processing technology for the utilisation of agro-waste fibres. Agric Wastes 4(6):461–475

    Article  CAS  Google Scholar 

  33. Siregar JP, Sapuan SM, Rahman MZA et al (2008) Characterization and chemical composition of short pineapple leaf fibres (PALF). In: Sapuan SM (ed) Proceeding of postgraduate seminar on natural fibre composites. Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, pp 19–24

    Google Scholar 

  34. Sørensen BF, Lilholt H (2016) Fiber pull-out test and single fiber fragmentation test-analysis and modelling. IOP Conf Series Mater Sci Eng 139(1):012009

    Article  Google Scholar 

  35. Suwanruji P, Tuechart T, Smitthipong W et al (2017) Modification of pineapple leaf fiber surfaces with silane and isocyanate for reinforcing thermoplastic. J Thermoplast Compos Mater 30(10):1344–1360

    Article  CAS  Google Scholar 

  36. Velusamy K, Navaneethakrishnan P, Rajeshkumar G, Sathishkumar TP (2019) The influence of fiber content and length on mechanical and water absorption properties of Calotropis Gigantea fiber reinforced epoxy composites. J Ind Text 48(8):1274–1290

    Article  CAS  Google Scholar 

  37. Yahya B, Asia S, Yusof Y (2013) Comprehensive review on the utilization of PALF. Adv Mater Res 701:430–434

    Article  Google Scholar 

  38. Zin MH, Abdan K, Mazlan N et al (2018) The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. IOP Conf Series Mater Sci Eng 368(1):012035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rajeshkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajeshkumar, G., Ramakrishnan, S., Pugalenthi, T., Ravikumar, P. (2020). Performance of Surface Modified Pineapple Leaf Fiber and Its Applications. In: Jawaid, M., Asim, M., Tahir, P., Nasir, M. (eds) Pineapple Leaf Fibers. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1416-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1416-6_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1415-9

  • Online ISBN: 978-981-15-1416-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics