Skip to main content

Fabrication of Pineapple Leaf Fibers Reinforced Composites

  • Chapter
  • First Online:
Pineapple Leaf Fibers

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Consumers are more aware of environmental impacts and climatic problems, which leads to a greater demand for products with technological innovations. Research has the aim to replace and reduce raw materials from fossil sources to renewable sources, such as the natural fibers. Natural fiber composites result from the blending of two materials: one is the plastic and the other a fiber, from agricultural waste in most of the cases. Compared to polymers from fossil sources, this new material has three main advantages: they have an environmental approved; low cost and its physical and mechanical properties are superior. The cultivation of this fruit is large in many tropical countries. After harvesting, the fruit and shoots are removed, and the rest needs to be cut and removed from the soil. This material, most leaves, becomes waste and goes to disposal. However, the use of pineapple leaf fibers as a raw material for natural fiber composites production helps to reduce the pollution caused by these residues and can increase the income of pineapple producers making a channel to new business. To have success in producing NFC, it is necessary to understand process techniques; to the adhesion between fiber and the polymer; the ratio of polymer and natural fiber; and the market (automotive, construction, etc.). But, after reading this chapter, it will be possible to conclude that there is a huge opportunity to improve the natural fibers market in front of the other reinforcements because of their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Faruk O et al (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26. https://doi.org/10.1002/mame.201300008

  2. Goulart SAS et al (2011) Mechanical behavior of polypropylene reinforced palm fibers composites. Procedia Eng 10:2034–2039

    Article  CAS  Google Scholar 

  3. Asim M et al (2015) Review article a review on pineapple leaves fibre and its composites. Int J Polym Sci

    Google Scholar 

  4. Dermibas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49(8):2106–2116. https://doi.org/10.1016/j.enconman.2008.02.020

    Article  CAS  Google Scholar 

  5. Marinelli AL et al (2008) Desenvolvimento de Compósitos Poliméricos com Fibras Vegetais Naturais da Biodiversidade: Uma Contribuição para a Sustentabilidade Amazônica. Polímeros: Ciência e Tecnol 18(2):92–99

    Google Scholar 

  6. Silva R et al (2009) Applications of lignocellulosic fibers in polymer chemistry and in composites. Quím Nova 32(3). https://doi.org/10.1590/s0100-40422009000300010

  7. Eckert CH (2000) Opportunities for natural fibers in plastic composites. In: Proceedings of the conference on progress in woodfibre-plastic composites, University of Toronto, Canada, pp 87–106

    Google Scholar 

  8. Nova Institute (2014) Wood-plastic composites (WPC) and natural fibre composites (NFC): European and global markets 2012 and future trends in automotive and construction. Nova Institute

    Google Scholar 

  9. Grand View Research (2016) Natural fiber composites (NFC) market size, share & trends report natural fiber composites (NFC) market size, share & trends analysis report by raw material, by matrix, by technology, by application, and segment forecasts, 2018–2024. 2016. Available in: https://www.grandviewresearch.com/industry-analysis/natural-fiber-composites-market. Accessed in: 15 July 2019

  10. Chandramohan D, Marimuthu K (2011) A review on natural fibers. IJRRAS 8(2)

    Google Scholar 

  11. Honest Version, Available in: https://honestversion.com/natural-fiber-composites-market-2022-top-key-players-kg-tecnaro-gmbh-kafus-biocomposites-inc/. Accessed in: 20 Aug 2019

  12. Pupo HFF (2017) Viabilidade técnica da produção de compósitos fibra polímero à base de resíduos. Doctoral thesis. Universidade Estadual Paulista Júlio de Mesquita Filho

    Google Scholar 

  13. Marcon JS et al (2009) Estudo da modificação da fibra proveniente da coroa de abacaxi para a formação de compósitos poliméricos. Anais do 10º Congresso Brasileiro de Polímeros, Foz do Iguaçu, PR

    Google Scholar 

  14. Scandola EZM (2011) Green composites: an overview. Polym Compos, 1906–1915

    Google Scholar 

  15. Zah R et al (2007) Curauá fibers in the automobile industry—a sustainability assessment. J Cleaner Prod 15(11):1032–1040. ISSN 0959-6526

    Google Scholar 

  16. Leao AL et al (2000) Curaua fiber–a tropical natural fibers from Amazon potential and applications in composites. Nat Polym Agrofibers Bases Compos Embrapa Instrumentacao Agropecuaria, 257–272

    Google Scholar 

  17. Santosha PVChRK et al (2018) Effect of fiber loading on thermal properties of banana and pineapple leaf fibers reinforced polyester composites. Sci Direct Mater Today: Proc 5:5631–5635

    Google Scholar 

  18. Chollakup R et al (2011) Pineapple leaf fibers reinforced thermoplastic composites: effects of fiber length and fiber content on their characteristics. J Appl Polym Sci 119:1952–1960

    Article  CAS  Google Scholar 

  19. Leao AL, Available in: http://moldesinjecaoplasticos.com.br/estudo-desenvolve-fibras-de-banana-e-abacaxi-para-reforco-de-termoplastico/. Accessed in: 06 Aug 2019

  20. Alexandre MEO (2005) Compósitos de Matriz Poliéster Reforçados com Fibra da Folha do Abacaxi. Doctoral thesis. Universidade Federal do Rio Grande do Norte, Natal

    Google Scholar 

  21. Sapuan SM et al (2011) Pineapple leaf fibers and PALF-reinforced polymer composites. Cellul Fibers Bio- Nano-Polym Compos, 325–343. https://doi.org/10.1007/978-3-642-17370-7_12

  22. Mishra S et al (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974. https://doi.org/10.1002/mame.200400132

  23. Kleba I, Zabold J (2004) Poliuretano com fibras naturais ganha espaço na indústria automotiva. Plástico Ind, 88–99

    Google Scholar 

  24. Leao AL et al (2010) Agro-based biocomposites for industrial applications. Mol Cryst Liq Cryst, 318–327. https://doi.org/10.1080/15421401003719852

  25. Beltrami LVR et al (2014) Efeito do tratamento alcalino de fibras de curauá sobre as propriedades de compósitos de matriz biodegradável. Polímeros 24(3):388–394

    Article  CAS  Google Scholar 

  26. Li X et al (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33. https://doi.org/10.1007/s10924-006-0042-3

  27. Ishizaki MH et al (2006) Caracterização mecânica e morfológica de compósitos de polipropileno e fibras de coco verde: influência do teor de fibra e das condições de mistura. Polímeros: Ciência e Tecnologia, São Carlos 16(3):182–186

    Google Scholar 

  28. Siakeng R et al (2019) Natural fiber reinforced polylactic acid composites: a review. Polym Compos 40:446–463. https://doi.org/10.1002/pc.24747

  29. JUCH, Available in: https://juch.fr/en/product/pineapple-fiber-natural-men/. Accessed in: 22 Aug 2019

  30. Jawaid M, Khalil HPSA (2011) Cellulosic synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18

    Article  CAS  Google Scholar 

  31. Composite World, Available in https://www.compositesworld.com/blog/po st/natural-fiber-composites-whats-holding-them-back. Accessed in: 22 Aug 2019

  32. Mohanty AK et al (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10(1/2)

    Google Scholar 

  33. Aquino MS (2006) Desenvolvimento de uma desfribadeira para obtenção da fibra da folha do abacaxi. Master dissertation. Universidade Federal do Rio Grande do Norte, Natal

    Google Scholar 

  34. Paul NG (1980) Some methods for the utilisation of waste from fibre crops and fibre waste from other crops. Agric Waste 2:313–318

    Article  Google Scholar 

  35. Leao AL et al (2014) The use of pineapple leaf fibers (PALFs) as reinforcements in composites. In: Biofiber reinforcements in composite materials, vol 1(1), pp 211–235

    Google Scholar 

  36. Leao AL et al (2007) Production of curaua (Ananas Erectifolius LB SMITH) fibers for industrial applications: characterization and micropropagation. In: VI international pineapple symposium, vol 822, pp 227–238

    Google Scholar 

  37. Ahmad F et al (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300:10–24. https://doi.org/10.1002/mame.201400089

    Article  CAS  Google Scholar 

  38. Joshi SV et al (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A 35:371–376

    Google Scholar 

  39. Bongarde US, Shinde VD (2014) Review on natural fiber reinforcement polymer composites. Int J Eng Sci Innov Technol (IJESIT). 3(2)

    Google Scholar 

  40. FAO, Accessible online at http://www.fao.org/faostat/en/#data/QC. Accessed in: 01 Aug 2019

  41. Mohanty AK et al (2000) Surface modification of jute and its influence on performance of biodegradable jute-fabric/biopol composites. Compos Sci Technol 60:1115–1124

    Article  CAS  Google Scholar 

  42. Ku H et al (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B 42:856–873

    Article  Google Scholar 

  43. ITFN, Available in: https://www.itfnet.org/v1/2015/12/canada-pineapple-now-a-leather-alternative-for-shoes/. Accessed in: 22 Aug 2019

  44. Natural fiber for automotive, Avaiable in: https://www.naturalfibersforautomotive.com/wp-content/uploads/2014/04/04-mercedes-s-class-11.jpg Accessed 08 Jan 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Leao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cesarino, I., Carnietto, M.B., Bronzato, G.R.F., Leao, A.L. (2020). Fabrication of Pineapple Leaf Fibers Reinforced Composites. In: Jawaid, M., Asim, M., Tahir, P., Nasir, M. (eds) Pineapple Leaf Fibers. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1416-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1416-6_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1415-9

  • Online ISBN: 978-981-15-1416-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics