Skip to main content

EEGNAS: Neural Architecture Search for Electroencephalography Data Analysis and Decoding

  • Conference paper
  • First Online:
Human Brain and Artificial Intelligence (HBAI 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1072))

Included in the following conference series:

Abstract

EEG, Electroencephalography, is the acquisition and decoding of electric brain signals. The data acquired from EEG scans can be put to use in many fields, including seizure prediction, treatment of mental illness, brain-computer interfaces (BCIs) and more. Recent advances in deep learning (DL) in fields of image classification and natural language processing have motivated researchers to apply DL for classification of EEG signals as well. One major caveat in DL is the amount of human effort and expertise required for the development of efficient and effective neural network architectures. Neural architecture search algorithms are used to automatically find good enough neural network architectures for a problem and dataset at hand. In this research, we employ genetic algorithms for optimizing neural network architectures for multiple tasks related to EEG processing while addressing two unique challenges related to EEG: (1) small amounts of labeled EEG data per subject, and (2) high diversity of EEG signal patterns across subjects. Neural network architectures produced during this study successfully compete with state of the art architectures published in the literature. Particularly successful are architectures optimized for all (human) subjects, with evolution and training performed on a mixed dataset including all subjects’ data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ang, K.K., Chin, Z.Y., Zhang, H., Guan, C.: Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008, (IEEE World Congress on Computational Intelligence), pp. 2390–2397. IEEE (2008)

    Google Scholar 

  2. Antonenko, P., Paas, F., Grabner, R., Van Gog, T.: Using electroencephalography to measure cognitive load. Educ. Psychol. Rev. 22(4), 425–438 (2010)

    Article  Google Scholar 

  3. Britton, J.W., et al.: Electroencephalography (EEG): an introductory text and atlas of normal and abnormal findings in adults, children, and infants. American Epilepsy Society, Chicago (2016)

    Google Scholar 

  4. Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., Pfurtscheller, G.: BCI Competition 2008-Graz Data Set A (2008)

    Google Scholar 

  5. Chambon, S., Galtier, M.N., Arnal, P.J., Wainrib, G., Gramfort, A.: A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Trans. Neural Syst. Rehabil. Eng. 26(4), 758–769 (2018)

    Article  Google Scholar 

  6. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)

  7. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report. Citeseer (2009)

    Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  9. Längkvist, M., Karlsson, L., Loutfi, A.: A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn. Lett. 42, 11–24 (2014)

    Article  Google Scholar 

  10. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: a compact convolutional network for EEG-based brain-computer interfaces. arXiv preprint arXiv:1611.08024 (2016)

  11. Leeb, R., Brunner, C., Müller-Putz, G., Schlögl, A., Pfurtscheller, G.: BCI Competition 2008-Graz Data Set B. Graz University of Technology, Austria (2008)

    Google Scholar 

  12. Lopez, S., Suarez, G., Jungreis, D., Obeid, I., Picone, J.: Automated identification of abnormal adult EEGs. In: 2015 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–5. IEEE (2015)

    Google Scholar 

  13. Margaux, P., Emmanuel, M., Sébastien, D., Olivier, B., Jérémie, M.: Objective and subjective evaluation of online error correction during p300-based spelling. Adv. Hum.-Comput. Interact. 2012, 4 (2012)

    Article  Google Scholar 

  14. Miikkulainen, R., et al.: Evolving deep neural networks. In: Artificial Intelligence in the Age of Neural Networks and Brain Computing, pp. 293–312. Elsevier (2019)

    Google Scholar 

  15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  16. Mirowski, P., Madhavan, D., LeCun, Y., Kuzniecky, R.: Classification of patterns of eeg synchronization for seizure prediction. Clin. Neurophysiol. 120(11), 1927–1940 (2009)

    Article  Google Scholar 

  17. Montana, D.J., Davis, L.: Training feedforward neural networks using genetic algorithms. In: IJCAI, vol. 89, pp. 762–767 (1989)

    Google Scholar 

  18. NeuroTechX: Neurotechx/moabb, February 2019. https://github.com/NeuroTechX/moabb

  19. Oh, S.L., et al.: A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Comput. Appl. 1–7 (2018)

    Google Scholar 

  20. Ordóñez, F., Roggen, D.: Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Article  Google Scholar 

  21. Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001)

    Article  Google Scholar 

  22. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. arXiv preprint arXiv:1802.01548 (2018)

  23. Real, E., et al.: Large-scale evolution of image classifiers. arXiv preprint arXiv:1703.01041 (2017)

  24. Roggen, D., et al.: Collecting complex activity datasets in highly rich networked sensor environments. In: 2010 Seventh International Conference on Networked Sensing Systems (INSS), pp. 233–240. IEEE (2010)

    Google Scholar 

  25. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for eeg decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  26. Srinivas, M., Patnaik, L.M.: Genetic algorithms: a survey. Computer 27(6), 17–26 (1994)

    Article  Google Scholar 

  27. Tang, Z., Li, C., Sun, S.: Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik-Int. J. Light Electron Opt. 130, 11–18 (2017)

    Article  Google Scholar 

  28. Völker, M., Schirrmeister, R.T., Fiederer, L.D., Burgard, W., Ball, T.: Deep transfer learning for error decoding from non-invasive EEG. In: 2018 6th International Conference on Brain-Computer Interface (BCI), pp. 1–6. IEEE (2018)

    Google Scholar 

  29. Wang, B., Sun, Y., Xue, B., Zhang, M.: Evolving deep convolutional neural networks by variable-length particle swarm optimization for image classification. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2018)

    Google Scholar 

  30. Whitley, D., et al.: Genetic algorithms and neural networks. Genetic Algorithms Eng. Comput. Sci. 3, 203–216 (1995)

    Google Scholar 

  31. Zoefel, B., Huster, R.J., Herrmann, C.S.: Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage 54(2), 1427–1431 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Israeli Ministry of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elad Rapaport .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rapaport, E., Shriki, O., Puzis, R. (2019). EEGNAS: Neural Architecture Search for Electroencephalography Data Analysis and Decoding. In: Zeng, A., Pan, D., Hao, T., Zhang, D., Shi, Y., Song, X. (eds) Human Brain and Artificial Intelligence. HBAI 2019. Communications in Computer and Information Science, vol 1072. Springer, Singapore. https://doi.org/10.1007/978-981-15-1398-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1398-5_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1397-8

  • Online ISBN: 978-981-15-1398-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics