Skip to main content

Microbial Interventions to Induce Secondary Metabolite Biosynthesis in Medicinal and Aromatic Plants

  • Chapter
  • First Online:
Bioactive Natural products in Drug Discovery

Abstract

Medicinal and aromatic plants (MAPs) are well known to produce a plethora of secondary metabolites that are important class of phytochemicals demonstrating enormous structural diversity. Considerable dilemma regarding their biological functions, immense array of pharmaceutical activities, and their uses as flavoring agents, insecticides, medicines, coloring dyes, and aromatic agent make secondary metabolites fascinating candidates for research. Microbial interventions offer numerous choices through which the biosynthetic pathway in MAPs can be improved in pioneering ways, to induce phytochemicals of concern, to diminish the number of toxic chemicals, or even to produce new compounds. Pathway modulation approach has been useful to enhance the content of the compounds of interest or novel metabolites. Microorganism-mediated enhanced expression of plant secondary metabolite biosynthesis regulatory genes in MAPs is useful to confirm their functions. The microorganisms normally colonize plant and qualitatively and quantitatively increase the biosynthesis of bioactive compounds in the host plant. Detailed investigation of microorganisms and the ways they affect the biosynthesis of secondary metabolites may offer surplus options to harness this resource. This chapter embodies the findings of modern investigations involving various microorganisms that could alter the expression of biosynthesis regulatory genes in MAPs and enhance the accumulation of plant bioactive compounds. The chapter also provides perspectives on future research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajikumar PK, Tyo K, Carlsen S et al (2008) Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm 5:167–190

    CAS  PubMed  Google Scholar 

  • Akram M, Shahab-Uddin AA, Usmanghani K et al (2010) Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol 55:65–70

    Google Scholar 

  • Alam M, Khaliq A, Sattar A et al (2011) Synergistic effect of arbuscular mycorrhizal fungi and Bacillus subtilis on the biomass and essential oil yield of rose-scented geranium (Pelargonium graveolens). Arch Agron Soil Sci 57:889–898

    Google Scholar 

  • Alfarra HY, Omar MN (2013) Centella asiatica: from folk remedy to the medicinal biotechnology—a state revision. Intern J Biosci 3:49–67

    Google Scholar 

  • Ali MB, Yu KW, Hahn EJ et al (2006) Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Rep 25:613–620

    CAS  PubMed  Google Scholar 

  • Al-Marzoqi AH, Hadi MY, Hameed IH (2016) Determination of metabolites products by Cassia angustifolia and evaluate antimicrobial activity. J Pharm Phytother 8:25–48

    CAS  Google Scholar 

  • Arpana J, Bagyaraj DJ (2007) Response of kalmegh to an arbuscular mycorrhizal fungus and a plant growth promoting rhizo microorganism at two levels of phosphorus fertilizer. Am Euras J Agric Environ Sci 2:33–38

    Google Scholar 

  • Aruna MS, Prabha MS, Priya NS et al (2015) Catharanthus Roseus: ornamental plant is now medicinal boutique. J Drug Deliv Ther 5:1–4

    Google Scholar 

  • Atanasov AG, Waltenberger B, Pferschy-Wenzig EM et al (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotech Adv 33:1582–1614

    CAS  Google Scholar 

  • Atawodi SE, Atawodi JC (2009) Azadirachta indica (neem): a plant of multiple biological and pharmacological activities. Phytochem Rev 8:601–620

    CAS  Google Scholar 

  • Avoseh O, Oyedeji O, Rungqu P et al (2015) Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules 20:7438–7453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahadori F, Ashorabadi ES, Mirza M et al (2013) Improved growth, essential oil yield and quality in Thymus daenensis Celak on mycorrhizal and plant growth promoting rhizobacteria inoculation. Int J Agron Plant Prod 4:3384–3391

    Google Scholar 

  • Banchio E, Bogino PC, Zygadlo J et al (2008) Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem Syst Ecol 36:766–771

    CAS  Google Scholar 

  • Banchio E, Xie X, Zhang H et al (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657

    CAS  PubMed  Google Scholar 

  • Barnawal D, Pandey SS, Bharti N et al (2017) ACC deaminase containing plant growth promoting rhizobacteria protect Papaver somniferum from downy mildew. J Appl Microbiol 122:1286–1298

    CAS  PubMed  Google Scholar 

  • Bertea CM, Freije JR, Van der Woude H et al (2005) Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med 71:40–47

    CAS  PubMed  Google Scholar 

  • Bertrand S et al (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204

    CAS  PubMed  Google Scholar 

  • Bharti N, Barnawal D, Awasthi A et al (2014) Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiol Plant 36:45–60

    CAS  Google Scholar 

  • Bonilla A, Sarria ALF, Algar E et al (2014) Microbe associated molecular patterns from rhizosphere bacteria trigger germination and Papaver somniferum metabolism under greenhouse conditions. Plant Physiol Biochem 74:133–140

    CAS  PubMed  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S et al (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    CAS  Google Scholar 

  • Bruce TJ, Matthes MC, Napier JA et al (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    CAS  Google Scholar 

  • Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23:180–185

    CAS  PubMed  Google Scholar 

  • Chik WI, Zhu L, Fan LL et al (2015) Saussurea involucrata: a review of the botany, phytochemistry and ethnopharmacology of a rare traditional herbal medicine. J Ethnopharmacol 172:44–60

    CAS  PubMed  Google Scholar 

  • Christaki E, Bonos E, Giannenas I et al (2012) Aromatic plants as a source of bioactive compounds. Agriculture 2:228–243

    Google Scholar 

  • Costa DC, Costa DC, Costa HS et al (2015) Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends Food Sci Technol 45:336–354

    CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Biochem Mol Boil Plants 24:1250–1319

    Google Scholar 

  • Cummings M, Breitling R, Takano E (2014) Steps towards the synthetic biology of polyketide biosynthesis. FEMS Microbiol Lett 351:116–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dastborhan S, Zehtab SS, Nasrollahzadeh S et al (2011). Effect of plant growth-promoting rhizobacteria and nitrogen fertilizer on yield and essential oil of German chamomile (Matricaria chamomilla L.). In International Symposium on Medicinal and Aromatic Plants IMAPS2010 and History of Mayan Ethnopharmacology IMAPS2011 964. p 121–128)

    Google Scholar 

  • De Luca V, Salim V, Thamm A et al (2014) Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. Curr Opin Plant Biol 19:35–42

    PubMed  Google Scholar 

  • Debnath B, Singh WS, Das M et al (2018) Role of plant alkaloids on human health: a review of biological activities. Mater Today Chem 9:56–72

    CAS  Google Scholar 

  • Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637

    CAS  PubMed  Google Scholar 

  • del Rosario Cappellari L, Santoro MV, Nievas F et al (2013) Increase of secondary metabolite content in marigold by inoculation with plant growth-promoting rhizobacteria. Appl Soil Ecol 70:16–22

    Google Scholar 

  • del Rosario Cappellari L, Santoro MV, Reinoso H et al (2015) Anatomical, morphological, and phytochemical effects of inoculation with plant growth-promoting rhizobacteria on peppermint (Mentha piperita). J Chem Ecol 41:149–158

    PubMed  Google Scholar 

  • Deokar G, Kshirsagar S, Deore PA et al (2016) Pharmaceutical benefits of Plantago ovate (Isabgol seed): a review. Pharma Biol Eval 3:32–41

    Google Scholar 

  • Dharni S, Srivastava AK, Samad A et al (2014) Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery sludge amended soil. Chemosphere 117:433–439

    CAS  PubMed  Google Scholar 

  • Dwivedi V, Tripathi S (2014) Review study on potential activity of Piper betle. J Pharmacogn Phytochem 3:93–98

    Google Scholar 

  • Egamberdieva D, da Silva JAT (2015) Medicinal plants and PGPR: a new frontier for phytochemicals. In: Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Cham, pp 287–303

    Google Scholar 

  • Egamberdieva D, Shrivastava S, Varma A (eds) (2015) Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants, vol 42. Springer, Cham

    Google Scholar 

  • Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

    PubMed  PubMed Central  Google Scholar 

  • Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241:303–317

    CAS  PubMed  Google Scholar 

  • Ghorbanpour M, Ghafarzadegan R, Khavazi K et al (2013b) Two main tropane alkaloids variations of black henbane (Hyoscyamus niger) under PGPRs inoculation and water deficit stress induction at flowering stage. J Med Plants 1:29–42

    Google Scholar 

  • Ghorbanpour M, Hatami M (2014) Biopriming of Salvia officinalis seed with growth promoting rhizobacteria affects invigoration and germination indices. J Biol Environ Sci 8(22):29–36

    Google Scholar 

  • Ghorbanpour M, Hatami M, Kariman K et al (2016) Phytochemical variations and enhanced efficiency of antioxidant and antimicrobial ingredients in Salvia officinalis as inoculated with different rhizobacteria. Chem Biodivers 13:319–330

    CAS  PubMed  Google Scholar 

  • Ghorbanpour M, Hatami M, Khavazi K (2013a) Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turkish J Biol 37:350–360

    CAS  Google Scholar 

  • Ghorbanpour M et al (2015) Enhanced efficiency of medicinal and aromatic plants by PGPRs. In: Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Cham, pp 43–70

    Google Scholar 

  • Gómez-Galera S, Pelacho AM, Gené A et al (2007) The genetic manipulation of medicinal and aromatic plants. Plant Cell Rep 26:1689–1715

    PubMed  Google Scholar 

  • Graziose R, Ann Lila M, Raskin I (2010) Merging traditional Chinese medicine with modern drug discovery technologies to find novel drugs and functional foods. Curr Drug Discov Technol 7:2–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu W, Schmidt EW (2017) Three principles of diversity-generating biosynthesis. Acc Chem Res 50:2569–2576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Pandey R (2015) Microbial interference ameliorates essential oil yield and diminishes root-knot infestation in sweet basil under field conditions. Biocontrol Sci Tech 25:1165–1179

    Google Scholar 

  • Gupta R, Saikia SK, Pandey R (2017a) Bioconsortia augments antioxidant and yield in Matricaria recutita L. against Meloidogyne incognita (Kofoid and White) Chitwood infestation. Proc Natl Acad Sci India Sect B Biol Sci 87:335–342

    Google Scholar 

  • Gupta R, Singh A, Ajayakumar PV et al (2017b) Chitinolytic microbes confer Meloidogyne incognita resistance and augment secondary metabolites in Bacopa monnieri (L.) Pennell. Arch Phytopathol Plant Prot 50:178–196

    CAS  Google Scholar 

  • Gupta R, Singh A, Ajayakumar PV et al (2017c) Microbial interference mitigates Meloidogyne incognita mediated oxidative stress and augments bacoside content in Bacopa monnieri L. Microbiol Res 199:67–78

    CAS  PubMed  Google Scholar 

  • Gupta R, Singh A, Gupta MM et al (2016b) Cumulative role of bioinoculants on growth, antioxidant potential and artemisinin content in Artemisia annua L. under organic field conditions. World J Microbiol Biotechnol 32:167

    PubMed  Google Scholar 

  • Gupta R, Singh A, Kanaujia R et al (2018) Trichoderma harzianum ThU and its metabolites underscore alteration in essential oils of Ocimum basilicum and Ocimum sanctum. Proc Natl Acad Sci India Sect B Biol Sci 88:219–227

    CAS  Google Scholar 

  • Gupta R, Singh A, Pandey R (2016c) Microbe based technology ameliorates glandular trichomes, secondary metabolites and antioxidants in Pelargonium graveolens L’Hér. J Sci Food Agri 96:4151–4159

    CAS  Google Scholar 

  • Gupta R, Singh A, Srivastava M (2019) Plant-microbe interactions endorse growth by uplifting microbial community structure of Bacopa monnieri rhizosphere under nematode stress. Microbiol Res 218:87–96

    PubMed  Google Scholar 

  • Gupta R, Singh A, Srivastava M et al (2016a) Augmentation of systemic resistance and secondary metabolites by chitinolytic microbes in Withania somnifera against Meloidogyne incognita. Biocontrol Sci Tech 26:1626–1642

    Google Scholar 

  • Gupta R, Singh A, Srivastava M et al (2017d) Microbial modulation of bacoside A biosynthetic pathway and systemic defense mechanism in Bacopa monnieri under Meloidogyne incognita stress. Sci Rep 7:41867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Tiwari S, Saikia SK et al (2015) Exploitation of microbes for enhancing bacoside content and reduction of Meloidogyne incognita infestation in Bacopa monnieri L. Protoplasma 252:53–61

    CAS  PubMed  Google Scholar 

  • Han QQ, Wu YN, Gao HJ et al (2017) Improved salt tolerance of medicinal plant Codonopsis pilosula by Bacillus amyloliquefaciens GB03. Acta Physiol Plant 39:35

    Google Scholar 

  • Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14(2):111–129

    CAS  PubMed  Google Scholar 

  • Hopwood DA, Khosla C (2008) Genes for polyketide secondary metabolic pathways in microorganisms and plants. In: Secondary metabolites: their function and evolution, vol 752. Wiley, Chichester, p 88

    Google Scholar 

  • Hussain MS, Fareed S, Saba Ansari M et al (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10

    PubMed  PubMed Central  Google Scholar 

  • Jain P, Sharma HP, Basri F et al (2014) Pharmacological profiles of ethno-medicinal plant: Plumbago zeylanica L.—a review. Int J Pharm Sci Rev Res 24:157–163

    Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B et al (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B: Biointerfaces 60:7–11

    CAS  PubMed  Google Scholar 

  • Jana S, Shekhawat GS (2011) Critical review on medicinally potent plant species: Gloriosa superba. Fitoterapia 82:293–301

    CAS  PubMed  Google Scholar 

  • Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J (2019) Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 19:100182

    CAS  Google Scholar 

  • Karkanis A, Martins N, Petropoulos SA et al (2018) Phytochemical composition, health effects, and crop management of liquorice (Glycyrrhiza glabra L.): a medicinal plant. Food Rev Int 34:182–203

    CAS  Google Scholar 

  • Karthikeyan B, Jaleel CA, Azooz MM (2009) Individual and combined effects of Azospirillum brasilense and Pseudomonas fluorescens on biomass yield and ajmalicine production in Catharanthus roseus. Acad J Plant Sci 2:69–73

    Google Scholar 

  • Karthikeyan B, Joe MM, Jaleel CA et al (2010) Effect of root inoculation with plant growth promoting rhizobacteria (PGPR) on plant growth, alkaloid content and nutrient control of Catharanthus roseus (L.) G. Don. Nat Croatica 19:205–212

    Google Scholar 

  • Khanam Z, Singh O, Singh R et al (2013) Safed musli (Chlorophytum borivilianum): a review of its botany, ethnopharmacology and phytochemistry. J Ethnopharmacol 150:421–441

    CAS  PubMed  Google Scholar 

  • Kilam D, Saifi M, Abdin MZ et al (2015) Combined effects of Piriformospora indica and Azotobacter chroococcum enhance plant growth, antioxidant potential and steviol glycoside content in Stevia rebaudiana. Symbiosis 66:149–156

    CAS  Google Scholar 

  • Kilam D, Sharma P, Agnihotri A et al (2017) Microbial symbiosis and bioactive ingredients of medicinal plants. In: Mycorrhiza-eco-physiology, secondary metabolites, nanomaterials. Springer, Cham, pp 283–302

    Google Scholar 

  • Kim HJ, Chen F, Wang X et al (2005) Evaluation of antioxidant activity of vetiver (Vetiveria zizanioides L.) oil and identification of its antioxidant constituents. J Agric Food Chem 53:7691–7695

    CAS  PubMed  Google Scholar 

  • Kirakosyan A, Sirvent TM, Gibson DM et al (2004) The production of hypericins and hyperforin by in vitro cultures of St. John’s wort (Hypericum perforatum). Biotechnol Appl Biochem 39:71–81

    CAS  PubMed  Google Scholar 

  • Koul M, Lakra NS, Chandra R et al (2013) Catharanthus roseus and prospects of its endophytes: a new avenue for production of bioactive metabolites. Internat J Pharm Sci Res 4:2705

    Google Scholar 

  • Kumar A, Singh M, Singh PP et al (2016) Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatal Agricult Biotechnol 8:1–7

    Google Scholar 

  • Kumar J, Gupta PK (2008) Molecular approaches for improvement of medicinal and aromatic plants. Plant Biotechnol Rep 2:93

    Google Scholar 

  • Kumar V, Singh S, Singh A, Dixit AK, Shrivastava B, Kondalkar SA, Subhose V (2018b) Determination of phytochemical, antioxidant, antimicrobial, and protein binding qualities of hydroethanolic extract of Celastrus paniculatus. J Appl Biol Biotechnol 6(06):11–17

    CAS  Google Scholar 

  • Kumar V, Singh S, Singh A, Dixit AK, Srivastava B, Sidhu GK, Prakash O (2018a) Phytochemical, antioxidant, antimicrobial, and protein binding qualities of hydro-ethanolic extract of Tinospora cordifolia. J Biol Act Prod Nat 8(3):192–200

    CAS  Google Scholar 

  • Kumar V, Singh S, Singh R, Upadhyay N, Singh J, Pant P, Subhose V (2018c) Spectral, structural and energetic study of acephate, glyphosate, monocrotophos and phorate: an experimental and computational approach. J Taibah Univ Sci 12(1):69–78

    Google Scholar 

  • Kutchan TM (1998) Molecular genetics of plant alkaloid biosynthesis. In: The alkaloids: chemistry and biology, vol 50. Academic Press, San Diego, pp 257–316

    Google Scholar 

  • Lemus-Mondaca R, Vega-Gálvez A, Zura-Bravo L et al (2012) Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem 132:1121–1132

    CAS  PubMed  Google Scholar 

  • Loureiro C, Medema MH, van der Oost J et al (2018) Exploration and exploitation of the environment for novel specialized metabolites. Curr Opin Biotechnol 50:206–213

    CAS  PubMed  Google Scholar 

  • Lu Y, Shao D, Shi J et al (2016) Strategies for enhancing resveratrol production and the expression of pathway enzymes. Appl Microbial Biotechnol 100:7407–7421

    CAS  Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Ann Rev Plant Biol 63:73–105

    CAS  Google Scholar 

  • Malik S, Hossein Mirjalili M, Fett-Neto AG et al (2013) Living between two worlds: two-phase culture systems for producing plant secondary metabolites. Crit Rev Biotechnol 33:1–22

    CAS  PubMed  Google Scholar 

  • Martins A, Vieira H, Gaspar H et al (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 12:1066–1101

    PubMed  PubMed Central  Google Scholar 

  • Máthé Á (2015) Introduction: utilization/significance of medicinal and aromatic plants. In: Medicinal and aromatic plants of the world. Springer, Amsterdam, pp 1–12

    Google Scholar 

  • McKay DL, Blumberg JB (2006) A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother Res 20:619–633

    CAS  PubMed  Google Scholar 

  • Misawa N (2011) Pathway engineering for functional isoprenoids. Curr Opin Biotechnol 22:627–633

    CAS  PubMed  Google Scholar 

  • Miyahisa I, Funa N, Ohnishi Y et al (2006) Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Appl Microbial Biotechnol 71:53–58

    CAS  Google Scholar 

  • Miyazawa M, Okuno Y, Nakamura SI et al (2000) Antimutagenic activity of flavonoids from Pogostemon cablin. J Agric Food Chem 48:642–647

    CAS  PubMed  Google Scholar 

  • Mulabagal V, Tsay HS (2004) Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:29–48

    Google Scholar 

  • Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Org Cult (PCTOC) 118:1–16

    CAS  Google Scholar 

  • Narayani M, Srivastava S (2017) Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem Rev 16:1227–1252

    CAS  Google Scholar 

  • Ordookhani K, Sharafzadeh S, Zare M (2011) Influence of PGPR on growth, essential oil and nutrients uptake of sweet basil. Adv Environ Biol 5:672–677

    Google Scholar 

  • Pandey R, Kalra A, Gupta ML (2009) Evaluation of bio-agents and pesticide on root-knot nematode development and oil yield of patchouli. Arch Phytopathol Plant Protect 42:419–423

    CAS  Google Scholar 

  • Pandey R, Mishra AK, Tiwari S et al (2011) Enhanced tolerance of Mentha arvensis against Meloidogyne incognita (Kofoid and White) Chitwood through mutualistic endophytes and PGPRs. J Plant Interact 6(4):247–253

    Google Scholar 

  • Pandey SS, Singh S, Babu CV et al (2016a) Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Sci Rep 6:26583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey SS, Singh S, Babu CV et al (2016b) Endophytes of opium poppy differentially modulate host plant productivity and genes for the biosynthetic pathway of benzylisoquinoline alkaloids. Planta 243:1097–1114

    CAS  PubMed  Google Scholar 

  • Parveen S, Chester K, Husain SA (2015) Bioactive principles of Gymnema sylvestre R.Br. From yesterday’s tradition to tomorrow’s drug. Ann Phytomed 4(2):18–33

    CAS  Google Scholar 

  • Patel JR, Tripathi P, Sharma V et al (2011) Phyllanthus amarus: ethnomedicinal uses, phytochemistry and pharmacology: a review. J Ethnopharmacol 138:286–313

    CAS  PubMed  Google Scholar 

  • Rahi P, Pathania V, Gulati A et al (2010) Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside—a contents of Stevia rebaudiana Bertoni. Appl Soil Ecol 46:222–229

    Google Scholar 

  • Rajasekar S, Elango R (2011) Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Curr Bot 2(8):27–30

    Google Scholar 

  • Rao YK, Vimalamma G, Rao CV et al (2004) Flavonoids and andrographolides from Andrographis paniculata. Phytochemistry 65:2317–2321

    CAS  PubMed  Google Scholar 

  • Ray L, Moore BS (2016) Recent advances in the biosynthesis of unusual polyketide synthase substrates. Nat Prod Rep 33:150–161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saeed S et al (2017) Impacts of methyl jasmonate and phenyl acetic acid on biomass accumulation and antioxidant potential in adventitious roots of Ajuga bracteosa Wall ex Benth., a high valued endangered medicinal plant. Physiol Mol Biol Plants 23:229–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahoo N, Manchikanti P, Dey S (2010) Herbal drugs: standards and regulation. Fitoterapia 81:462–471

    PubMed  Google Scholar 

  • Santoro MV, Cappellari L, Giordano W et al (2015) Systemic induction of secondary metabolite biosynthesis in medicinal aromatic plants mediated by rhizobacteria. In Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants (pp. 263–285).Springer International Publishing, Cham

    Google Scholar 

  • Santoro MV, Zygadlo J, Giordano W et al (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49:1177–1182

    CAS  PubMed  Google Scholar 

  • Schmitt EK, Moore CM, Krastel P et al (2011) Natural products as catalysts for innovation: a pharmaceutical industry perspective. Curr Opin Chem Biol 15:497–504

    CAS  PubMed  Google Scholar 

  • Sekar S, Kandavel D (2010) Interaction of plant growth promoting rhizobacteria (PGPR) and endophytes with medicinal plants—new avenues for phytochemicals. J Phytology 2(7):91–100

    Google Scholar 

  • Selvaraj T, Sumithra P (2011) Effect of Glomus aggregatum and plant growth promoting rhizomicroorganisms on growth, nutrition and content of secondary metabolites in Glycyrrhiza glabra L. Ind J Appl Pure Biol 26:283–290

    Google Scholar 

  • Shrivastava S, Egamberdieva D, Varma A (2015) Plant growth-promoting rhizobacteria (PGPR) and medicinal plants: the state of the art. In: Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Cham, pp 1–16

    Google Scholar 

  • Singh A, Gupta R, Srivastava M et al (2016) Microbial secondary metabolites ameliorate growth, in planta contents and lignification in Withania somnifera (L.) Dunal. Physiol Mol Biol Plants 22:253–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Divya S, Awasthi A et al (2012) Technology for efficient and successful delivery of vermicompost colonized bioinoculants in Pogostemon cablin (patchouli) Benth. World J Microbiol Biotechnol 28:323–333

    PubMed  Google Scholar 

  • Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. Under organic field conditions. Mycorrhiza 23:35–44

    PubMed  Google Scholar 

  • Singh S, Kumar V, Kapoor D, Kumar S, Singh S, Dhanjal DS, Datta S, Samuel J, Dey P, Wang S, Prasad R (2019) Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions. Physiol Plant. https://doi.org/10.1111/ppl.13002

  • Srivastava S, Srivastava AK (2013) Biotechnology and genetic engineering for alkaloid production. In: Ramawat GK, Mérillon J-M (eds) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer-Verlag, Berlin, pp 213–250

    Google Scholar 

  • Strobel GA, Stierle A, Hess WM (1993) Taxol formation in yew—Taxus. Plant Sci 92:1–12

    CAS  Google Scholar 

  • Swamy MK, Akthar MS, Sinniah UR (2016) Response of PGPR and AM fungi toward growth and secondary metabolite production in medicinal and aromatic plants. In: Plant, soil and microbes. Springer International Publishing, Cham, pp 145–168

    Google Scholar 

  • Tajpoor N, Moradi R, Zaeim AN (2013) Effects of various fertilizers on quantity and quality of dill (Anethum graveolens L.) essential oil. Intern J Agric Crop Sci 6:1334

    Google Scholar 

  • Teti E, Apriliyanti MW, Asmak A et al (2013) Physicochemical and bioactives characteristics of purple and yellow water yam (Dioscorea alata) tubers. Intern J Pharm Tech Res 5:1691–1701

    Google Scholar 

  • Tiwari R, Awasthi A, Mall M et al (2013) Bacterial endophyte-mediated enhancement of in planta content of key terpenoid indole alkaloids and growth parameters of Catharanthus roseus. Ind Crop Prod 43:306–310

    CAS  Google Scholar 

  • Trantas EA, Koffas MA, Xu P et al (2015) When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts. Front Plant Sci 6:7

    PubMed  PubMed Central  Google Scholar 

  • Tzin V, Galili G (2010) New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant 3:956–972

    CAS  PubMed  Google Scholar 

  • Ullrich SF, Hagels H, Kayser O (2017) Scopolamine: a journey from the field to clinics. Phytochem Rev 16:333–353

    CAS  Google Scholar 

  • Upadhyay AK, Chacko AR, Gandhimathi A et al (2015) Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biol 15:212

    PubMed  PubMed Central  Google Scholar 

  • Vafadar F, Amooaghaie R, Otroshy M (2014) Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J Plant Interac 9:128–136

    CAS  Google Scholar 

  • Vallejo MJ, Salazar L, Grijalva M (2017) Oxidative stress modulation and ROS-mediated toxicity in cancer: a review on in vitro models for plant-derived compounds. Oxid Med Cell Longev 2017:4586068. https://doi.org/10.1155/2017/4586068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verpoorte R, Alfermann AW (eds) (2013) Metabolic engineering of plant secondary metabolism. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Google Scholar 

  • Wang S, Zhang S, Xiao A et al (2015) Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives. Metab Eng 29:153–159

    CAS  PubMed  Google Scholar 

  • Windisch W, Schedle K, Plitzner C et al (2008) Use of phytogenic products as feed additives for swine and poultry. J Animal Sci 86(14_suppl):E140–E148

    CAS  Google Scholar 

  • Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbial Biotechnol 73:980–990

    CAS  Google Scholar 

  • Wong FT, Khosla C (2012) Combinatorial biosynthesis of polyketides—a perspective. Curr Opin Chem Biol 16:117–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CQ et al (2012) Transcriptional regulation of plant secondary metabolism. J Integra Plant Biol 54:703–712

    CAS  Google Scholar 

  • Yang L, Stöckigt J (2010) Trends for diverse production strategies of plant medicinal alkaloids. Nat Prod Rep 27:1469–1479

    CAS  PubMed  Google Scholar 

  • Yang L, Wen KS, Ruan X et al (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:762

    PubMed Central  Google Scholar 

  • Yue W, Ming QL, Lin B et al (2016) Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol 36:215–232

    CAS  PubMed  Google Scholar 

  • Zenk MH, Rueffer M, Amann M et al (1985) Benzylisoquinoline biosynthesis by cultivated plant cells and isolated enzymes. J Nat Prod 48:725–738

    CAS  Google Scholar 

  • Zenkner FF, Margis-Pinheiro M, Cagliari A (2019) Nicotine biosynthesis in nicotiana: a metabolic overview. Tobacco Sci 56:1–9

    Google Scholar 

  • Zhao Y, Wu Y, Wang M (2015) Bioactive substances of plant origin. In: Handbook of food chemistry. Springer, Berlin Heidelberg, pp 967–1008

    Google Scholar 

  • Zhou JY, Li X, Zheng JY et al (2016) Volatiles released by endophytic Pseudomonas fluorescens promoting the growth and volatile oil accumulation in Atractylodes lancea. Plant Physiol Biochem 101:132–140

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupali Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, R., Anand, G., Pandey, R. (2020). Microbial Interventions to Induce Secondary Metabolite Biosynthesis in Medicinal and Aromatic Plants. In: Singh, J., Meshram, V., Gupta, M. (eds) Bioactive Natural products in Drug Discovery. Springer, Singapore. https://doi.org/10.1007/978-981-15-1394-7_25

Download citation

Publish with us

Policies and ethics