Skip to main content

Biopolymers and Their Application in Wastewater Treatment

  • Chapter
  • First Online:

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 18))

Abstract

Due to heavy industrialization and urbanization, the conservation of the environment has become increasingly important in view of the raised ecological problems. The discharge of huge quantities of effluents from industries and municipalities into rivers and lakes makes the condition vulnerable for sustainable life. The presence of organic toxics such as dyes and heavy metals, such as chromium, mercury, cadmium, cobalt, copper, nickel, lead, zinc and tin, in our water resources may cause serious health hazards to living organisms. Various technologies for removal of toxic chemicals and ions from industrial and agricultural effluents have been introduced such as adsorption, coagulation, flocculation, precipitation, co-precipitation, solvent extraction, ion exchange and membrane technology. However, most of these techniques require synthetic toxic reagents which are expensive too and hence the capital cost for treatment increases. The wide availability, biodegradability, non-toxicity and relatively inexpensiveness of biopolymers present an attractive alternative to such toxic synthetic and chemical products. In this context, several biopolymers were chemically refined to work as cationic or anionic agents for wastewater treatment. The book chapter summarizes the research carried out on the use of biopolymers to remove heavy metal and toxic chemicals from solutions and effluents. The various biopolymers (e.g. cellulose, chitosan, tannin, alginate, gums and mucilage), their classification, mechanisms of action, factors and their application in wastewater treatment in the scientific literature are analysed and compiled.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ablouh E-h, Hanani Z, Eladlani N, Rhazi M, Taourirte M (2019) Chitosan microspheres/sodium alginate hybrid beads: an efficient green adsorbent for heavy metals removal from aqueous solutions. Sustain Environ Res 29:5–15

    Article  Google Scholar 

  • Agarwal M, Srinivasan R, Mishra A (2001) Study on flocculation efficiency of okra gum in sewage waste water. Macromol Mater Eng 286:560–563

    Article  CAS  Google Scholar 

  • Ahmad AL, Ismail S, Bhatia S (2005) Optimization of coagulation–flocculation process for palm oil mill effluent using response surface methodology. Environ Sci Technol 39:2828–2834

    Article  CAS  Google Scholar 

  • Ahmad AL, Wong SS, Teng TT, Zuhairi A (2008) Improvement of alum and PACl coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater. Chem Eng J 137:510–517

    Article  CAS  Google Scholar 

  • Al-Hamadani YAJ, Yusoff MS, Umar M, Bashir MJK, Adlan MN (2011) Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. J Hazard Mater 190:582–587

    Article  CAS  Google Scholar 

  • Al-Rub FAA, El-Naas MH, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39:1767–1773

    Article  CAS  Google Scholar 

  • Anastasakis K, Kalderis D, Diamadopoulos E (2009) Flocculation behavior of mallow and okra mucilage in treating wastewater. Desalination 249:786–791

    Article  CAS  Google Scholar 

  • Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667

    Article  CAS  Google Scholar 

  • Aoki N, Fukushima K, Kurakata H, Sakamoto M, Furuhata K (1999) 6-Deoxy-6-mercaptocellulose and its S-substituted derivatives as sorbents for metal ions. React Funct Polym 42:223–233

    Article  CAS  Google Scholar 

  • Ashraf MA, Maah MJ, Yusoff I (2012) Development of new fill material technology for the ex-mining land reclamation for construction purposes. Fresenius Environ Bull 21(5a):1334–1343

    CAS  Google Scholar 

  • Ashraf MA, Maah MJ, Qureshi AK, Gharibreza M, Yusoff I (2013a) Synthetic polymer composite membrane for the desalination of saline water. Desalination Water Treat 51:3650–3661

    Article  CAS  Google Scholar 

  • Ashraf MA, Ullah S, Ahmad I, Qureshi AK, Balkhair KS, Rehman MA (2013b) Green biocides, a promising technology: current and future applications. J Sci Food Agric 94(3):388–403

    Article  CAS  Google Scholar 

  • Beltrán Heredia J, Sánchez Martín J (2009a) Removing heavy metals from polluted surface water with a tannin-based flocculant agent. J Hazard Mater 165:1215–1218

    Article  CAS  Google Scholar 

  • Beltrán Heredia J, Sánchez Martín J (2009b) Municipal wastewater treatment by modified tannin flocculant agent. Desalination 249:353–358

    Article  CAS  Google Scholar 

  • Bharagava RN, Chandra R (2010) Biodegradation of the major color containing compounds in distillery wastewater by an aerobic bacterial culture and characterization of their metabolites. Biodegrad J 21:703–711

    Article  CAS  Google Scholar 

  • Bharagava RN, Chandra R, Rai V (2008) Phytoextraction of trace elements and physiological changes in Indian mustard plants (Brassica nigra L.) grow in post methanated distillery effluent (PMDE) irrigated soil. BioresourTechnol 99(17):8316–8324

    Article  CAS  Google Scholar 

  • Bharagava RN, Saxena G, Mulla SI, Patel DK (2018) Characterization and identification of recalcitrant organic pollutants (ROPs) in tannery wastewater and its phytotoxicity evaluation for environmental safety. Arch Environ Contam Toxicol 75(2):259–272

    Article  CAS  Google Scholar 

  • Biggs S, Habgood M, Jameson GJ, Yan Y-d (2000) Aggregate structures formed via a bridging flocculation mechanism. Chem Eng J 80:13–22

    Article  CAS  Google Scholar 

  • Blais JF, Dufresne S, Mercier G (1999) État du développement technologique en matière d’enlèvement des métaux des effluents industriels. Rev Sci Eau 12:687–711

    CAS  Google Scholar 

  • Blanco A, Fuente E, Negro C, Tijero J (2002) Flocculation monitoring: focused beam reflectance measurement as a measurement tool. Can J Chem Eng 80:1–7

    Article  Google Scholar 

  • Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41:2301–2324

    Article  CAS  Google Scholar 

  • Brooks CS (1991) Metal recovery from industrial wastes. Lewis Publishers, Boca Raton

    Google Scholar 

  • Cárdenas G, Orlando P, Edelio T (2001) Synthesis and applications of chitosan mercaptanes as heavy metal retention agent. Int J Biol Macromol 28:167–174

    Article  Google Scholar 

  • Caskey JA, Primus RJ (1986) The effect of anionic polyacrylamide molecular conformation and configuration on flocculation effectiveness. Environ Prog 5:98–103

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN, Yadav S, Mohan D (2009) Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. J Hazard Mater 162:1514–1521

    Article  CAS  Google Scholar 

  • Chang YC, Chang SW, Chen DH (2006) Magnetic chitosan nanoparticles: studies on chitosan binding and adsorption of Co (II) ions. React Funct Polym 66(3):335–341

    Article  CAS  Google Scholar 

  • Chaudhary S, Sharma J, Kaith BS, Yadav S, Sharma AK, Goel A (2018) Gum xanthan-psyllium-cl-poly(acrylic acid-co-itaconic acid) based adsorbent for effective removal of cationic and anionic dyes: adsorption isotherms, kinetics and thermodynamic studies. Ecotoxic Environ Safety 149:150–158

    Article  CAS  Google Scholar 

  • Chen YW, Wang JL (2012) The characteristics and mechanism of Co (II) removal from aqueous solution by a novel xanthate-modified magnetic chitosan. Nucl Eng Des 242:452–457

    Article  CAS  Google Scholar 

  • Chiou MS, Li HY (2002) Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. J Hazard Mater B93:233–248

    Article  Google Scholar 

  • Chmielewski AP, Urbanski TS, Migdal W (1997) Separation technologies for metals recovery from industrial wastes. Hydrometallurgy 45:333–344

    Article  CAS  Google Scholar 

  • Das R, Panda AB, Pal S (2012) Synthesis and characterization of a novel polymeric hydrogel based on hydroxypropyl methyl cellulose grafted with polyacrylamide. Cellulose 19:933–945

    Article  CAS  Google Scholar 

  • Delval F, Crini G, Vebrel J, Knorr M, Sauvin G, Conte E (2003) Starch-modified filters used for the removal of dyes from waste water. Macromol Symp 203:165–171

    Article  CAS  Google Scholar 

  • Elwakeel KZ, El-Bindary AA, Ismail A, Morshidy AM (2017) Magnetic chitosan grafted with polymerized thiourea for remazol brilliant blue R recovery: effects of uptake conditions. J Dispers Sci Technol 38(7):943–952

    Article  CAS  Google Scholar 

  • Ge HC, Luo DK (2005) Preparation of carboxymethyl chitosan in aqueous solution under microwave irradiation. Carbohydr Res 340(7):1351–1356

    Article  CAS  Google Scholar 

  • Golie WM, Upadhyayula S (2017) An investigation on biosorption of nitrate from water by chitosan based organic-inorganic hybrid biocomposites. Int J Biol Macromol 97:489–502

    Article  CAS  Google Scholar 

  • Gomez CG, Lambrecht MVP, Lozano JE, Rinaudo M, Villara MA (2009) Influence of the extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). Int J Biol Macromol 44:365–371

    Article  CAS  Google Scholar 

  • Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    Article  CAS  Google Scholar 

  • Guibal E, Roussy J (2007) Coagulation and flocculation of dye-containing solutions using a biopolymer (chitosan). React Funct Polym 67:33–42

    Article  CAS  Google Scholar 

  • Guibal E, Van Vooren M, Dempsey BA, Roussy J (2006) A review of the use of chitosan for the removal of particulate and dissolved contaminants. Sep Sci Technol 41:2487–2514

    Article  CAS  Google Scholar 

  • Guo P, Anderson JD, Bozell JJ, Zivanovic S (2016) The effect of solvent composition on grafting gallic acid onto chitosan via carbodiimide. Carbohydr Polym 140:171–180

    Article  CAS  Google Scholar 

  • Habiba U, Afifi AM, Salleh A, Ang BC (2017) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6C, Fe3C and Ni2C. J Hazard Mater 322:182–194

    Article  CAS  Google Scholar 

  • Huang CH, Hsieh TH, Chiu WY (2015) Evaluation of thermally crosslinkable chitosan-based nanofibrous mats for the removal of metal ions. Carbohydr Polym 116:249–254

    Article  CAS  Google Scholar 

  • Jaafari K, Ruiz T, Elmaleh S, Coma J, Benkhouja K (2004) Simulation of a fixed bed adsorber packed with protonated cross-linked chitosan gel beads to remove nitrate from contaminated water. Chem Eng J 99:153–160

    Article  CAS  Google Scholar 

  • Jeon C, Park JY, Yoo YJ (2002) Characteristics of metal removal using carboxylated alginic acid. Water Res 36:1814–1824

    Article  CAS  Google Scholar 

  • Jeon C, Yoo YJ, Hoell WH (2005) Environmental effects and desorption characteristics on heavy metal removal using carboxylated alginic acid. Bioresour Technol 96:15–19

    Article  CAS  Google Scholar 

  • Kamel S, Hassan EM, El-Sakhawy M (2006) Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. J Appl Polym Sci 100(1):329–334

    Article  CAS  Google Scholar 

  • Karagunduz A, Kaya Y, Keskinler B, Oncel S (2006) Influence of surfactant entrapment to dried alginate beads on sorption and removal of Cu2+ ions. J Hazard Mater 131:79–83

    Article  CAS  Google Scholar 

  • Khiari R, Dridi-Dhaouadi S, Aguir C, Mhenni MF (2010) Experimental evaluation of eco-friendly flocculants prepared from date palm rachis. J Environ Sci 22:1539–1543

    Article  CAS  Google Scholar 

  • Kishor R, Bharagava RN, Saxena G (2019) Industrial wastewaters: the major sources of dye contamination in the environment, ecotoxicological effects, and bioremediation approaches. In: Bharagava RN (ed) Recent advances in environmental management. CRC Press Taylor & Francis, Boca Raton, p 13. ISBN: 978–0–8153-8314-7

    Google Scholar 

  • Kumar D, Pandey J, Khan N, Kumar P, Kundu PP (2019a) Synthesize and characterization of binary grafted psyllium for removing toxic mercury (II) ions from aqueous solution. Mat Sci Eng C 104:109900

    Article  CAS  Google Scholar 

  • Kumar R, Sharma RK, Singh AP (2019b) Grafting of cellulose with N-isopropylacrylamide and glycidyl methacrylate for efficient removal of Ni(II), Cu(II) and Pd(II) ions from aqueous solution. Sep Purif Technol 219:249–259

    Article  CAS  Google Scholar 

  • Lazaridis NK, Keenan H (2010) Chitosan beads as barriers to the transport of azo dye in soil column. J Hazard Mater 173:144–150

    Article  CAS  Google Scholar 

  • Lee KE, Morad N, Teng TT, Poh BT (2012) Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: a review. Chem Eng J 203:370–386

    Article  CAS  Google Scholar 

  • Li Y, Qiu TB, Xu XY (2013a) Preparation of lead-ion imprinted crosslinked electrospun chitosan nanofiber mats and application in lead ions removal from aqueous solutions. Eur Polym J 49:1487–1494

    Article  CAS  Google Scholar 

  • Li J, Jiao S, Zhong L, Pan J, Ma Q (2013b) Optimizing coagulation and flocculation process for kaolinite suspension with chitosan. Colloids Surf A Physicochem Eng Aspects 428:100–110

    Article  CAS  Google Scholar 

  • Liu Q, Yang BC, Zhang LJ, Huang RH (2015) Simultaneous adsorption of aniline and Cu2C from aqueous solution using activated carbon/chitosan composite. Desalination Water Treat 55:410–419

    Article  CAS  Google Scholar 

  • Liu Q, Liu Q, Liu B, Hu T, Liu W, Yao J (2018) Green synthesis of tannin-hexamethylendiamine based adsorbents for efficient removal of Cr (VI). J Hazard Mater 352:27–35

    Article  CAS  Google Scholar 

  • McDowall DJ, Gupta BS, Stannett VT (1984) Grafting of vinyl monomers to cellulose by ceric ion initiation. Prog Polym Sci 10(1):1–50

    Article  CAS  Google Scholar 

  • Min LL, Yuan ZH, Zhong LB, Liu Q, Wu RX, Zheng YM (2015) Preparation of chitosan based electrospun nanofiber membrane and its adsorptive removal of arsenate from aqueous solution. Chem Eng J 267:132–141

    Article  CAS  Google Scholar 

  • Mishra A, Bajpai M (2005) Flocculation behaviour of model textile wastewater treated with a food grade polysaccharide. J Hazard Mater 118:213–217

    Article  CAS  Google Scholar 

  • Mishra A, Agarwal M, Yadav A (2003) Fenugreek mucilage as a flocculating agent for sewage treatment. Colloid Polym Sci 281:164–167

    Article  CAS  Google Scholar 

  • Mishra A, Yadav A, Agarwal M, Bajpai M (2004) Fenugreek mucilage for solid removal from tannery effluent. React Funct Polym 59:99–104

    Article  CAS  Google Scholar 

  • Mærk M (2014) Looking for the big picture: genome-based approaches to improve alginate production in Azotobacter Vinelandii, (Ph.D. thesis). Norwegian University of Science and Technology

    Google Scholar 

  • No H, Meyers S (2000) Application of chitosan for treatment of wastewaters. In: Ware G (ed) Reviews of environmental contamination and toxicology. Springer, New York, pp 1–27

    Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Article  CAS  Google Scholar 

  • Özacar M, Şengil İA (2000) Effectiveness of tannins obtained from valonia as a coagulant aid for dewatering of sludge. Water Res 34:1407–1412

    Article  Google Scholar 

  • Özacar M, Şengil İA (2003) Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles. Colloids Surf A Physicochem Eng Aspects 229:85–96

    Article  CAS  Google Scholar 

  • Papageorgiou SK, Katsaros FK, Kouvelos EP, Nolan JW, Deit HL, Kanellopoulos NK (2006) Heavy metal sorption by calcium alginate beads from Laminaria digitata. J Hazard Mater 137:1765–1772

    Article  CAS  Google Scholar 

  • Park HG, Chae MY (2004) Novel type of alginate gel-based adsorbents for heavy metal removal. J Chem Technol Biotechnol 79:1080–1083

    Article  CAS  Google Scholar 

  • Patterson JW (1989) Industrial wastes reduction. Environ Sci Technol 23:1032–1038

    Article  Google Scholar 

  • Qin CQ, Du YM, Zhang ZQ, Liu Y, Xiao L, Shi XW (2003) Adsorption of chromium (VI) on a novel Quaternized chitosan resin. J Appl Polym Sci 90:505–510

    Article  CAS  Google Scholar 

  • Radoiu MT, Martin DI, Calinescu I, Iovu H (2004) Preparation of polyelectrolytes for wastewater treatment. J Hazard Mater 106:27–37

    Article  CAS  Google Scholar 

  • Ramya R, Sankar P, Anbalagan S, Sudha PN (2011) Adsorption of Cu (II) and Ni (II) ions from metal solution using crosslinked chitosan-g-acrylonitrile copolymer. Int J Environ Sci 1:1323–1338

    CAS  Google Scholar 

  • Razali MAA, Ahmad Z, Ahmad MSB, Ariffin A (2011) Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation. Chem Eng J 166:529–535

    Article  CAS  Google Scholar 

  • Renault F, Sancey B, Badot PM, Crini G (2009a) Chitosan for coagulation/flocculation processes-an eco-friendly approach. Eur Polym J 45:1337–1348

    Article  CAS  Google Scholar 

  • Renault F, Sancey B, Charles J, Morin-Crini N, Badot P-M, Winterton P, Crini G (2009b) Chitosan flocculation of cardboard-mill secondary biological wastewater. Chem Eng J 155:775–783

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Rodrigues AC, Boroski M, Shimada NS, Garcia JC, Nozaki J, Hioka N (2008) Treatment of paper pulp and paper mill wastewater by coagulation–flocculation followed by heterogeneous photocatalysis. J Photochem Photobiol A Chem 194:1–10

    Article  CAS  Google Scholar 

  • Roussy J, Chastellan P, Vooren MV, Guibal E (2005) Treatment of ink-containing wastewater by coagulation/flocculation using biopolymers. Water SA 31:369–376

    CAS  Google Scholar 

  • Ruiz M, Sastre AM, Guibal E (2000) Palladium sorption on glutaraldehyde-crosslinked chitosan. React Funct Polym 45:155–173

    Article  CAS  Google Scholar 

  • Salehi E, Daraei P, Arabi Shamsabadi A (2016) A review on chitosan-based adsorptive membranes. Carbohydr Polym 152:419–432

    Article  CAS  Google Scholar 

  • Saravanan R, Ravikumar L (2015) The use of new chemically modified cellulose for heavy metal ion adsorption and antimicrobial activities. J Water Resour Prot 7:530–545

    Article  CAS  Google Scholar 

  • Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues and future prospects. Rev Environ Contam Toxicol 249:71–131

    Google Scholar 

  • Sessarego S, Rodrigues SCG, Xiao Y, Lu Q, Hill JM (2019) Phosphonium-enhanced chitosan for Cr (VI) adsorption in wastewater treatment. Carbohydr Polym 211:249–256

    Article  CAS  Google Scholar 

  • Sharma BR, Dhuldhoya NC, Merchant UC (2006) Flocculants-an ecofriendly approach. J Polym Environ 14:195–202

    Article  CAS  Google Scholar 

  • Sher F, Malik A, Liu H (2013) Industrial polymer effluent treatment by chemical coagulation and flocculation. J Environ Chem Eng 1:684–689

    Article  CAS  Google Scholar 

  • Singh AS, Guleria A (2014) Chemical modification of cellulosic biopolymer and its use in removal of heavy metal ions from wastewater. Int J Biol Macromol 67:409–417

    Article  CAS  Google Scholar 

  • Smith AM, Miri T (2010) Alginates in foods. In: Norton IT (ed) Practical food rheology. Wiley

    Google Scholar 

  • Sorlier P, Denuzière A, Viton C, Domard A (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2:765–772

    Article  CAS  Google Scholar 

  • Stanford ECC (1881) British patent 142

    Google Scholar 

  • Suopajärvi T, Liimatainen H, Hormi O, Niinimaki J (2013) Coagulation–flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chem Eng J 231:59–67

    Article  CAS  Google Scholar 

  • Szyguła A, Guibal E, Palacin MA, Ruiz M, Sastre AM (2009) Removal of an anionic dye (acid blue 92) by coagulation–flocculation using chitosan. J Environ Manag 90:2979–2986

    Article  CAS  Google Scholar 

  • Tanhaei B, Ayati A, Lahtinen M, Sillanpää M (2015) Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of methyl Orange adsorption. Chem Eng J 259:1–10

    Article  CAS  Google Scholar 

  • Tatsi AA, Zouboulis AI, Matis KA, Samaras P (2003) Coagulation–flocculation pretreatment of sanitary landfill leachates. Chemosphere 53:737–744

    Article  CAS  Google Scholar 

  • Vieira MGA, Silva MAD, Santos LOD, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263

    Article  CAS  Google Scholar 

  • Viswanathan N, Sundaram CS, Meenakshi S (2009) Sorption behaviour of fluoride on carboxylated cross-linked chitosan beads. Colloids Surf B Biointerfaces 68:48–54

    Article  CAS  Google Scholar 

  • Wang G, Chen Y, Xu G, Pei Y (2019) Effective removing of methylene blue from aqueous solution by tannins immobilized on cellulose microfibers. Inter J Biol Macromol 129:198–206

    Article  CAS  Google Scholar 

  • Wong SS, Teng TT, Ahmad AL, Zuhairi A, Najafpour G (2006) Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation. J Hazard Mater 135:378–388

    Article  CAS  Google Scholar 

  • Wong YC, Szeto YS, Cheung WH, McKay G (2008) Effect of temperature, particle size and percentage deacetylation on the adsorption of acid dyes on chitosan. Adsorption 14:11–20

    Article  CAS  Google Scholar 

  • Wu C, Wang Y, Gao B, Zhao Y, Yue Q (2012) Coagulation performance and floc characteristics of aluminum sulfate using sodium alginate as coagulant aid for synthetic dying wastewater treatment. Sep Purif Technol 95:180–187

    Article  CAS  Google Scholar 

  • Yen M-T, Mau J-L (2007) Physico-chemical characterization of fungal chitosan from shiitake stipes. LWT Food Sci Technol 40:472–479

    Article  CAS  Google Scholar 

  • Yue QY, Gao BY, Wang Y, Zhang H, Sun X, Wang SG, Gu RR (2008) Synthesis of polyamine flocculants and their potential use in treating dye wastewater. J Hazard Mater 152:221–227

    Article  CAS  Google Scholar 

  • Zainith S, Purchase D, Saratale GD, Ferreira LFR, Bilal M, Bharagava RN (2019) Isolation and characterization of lignin-degrading bacterium Bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential. 3 Biotech 9(3):92

    Article  Google Scholar 

  • Zhong J, Sun X, Wang C (2003) Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Sep Purif Technol 32:93–98

    Article  CAS  Google Scholar 

  • Zhu YH, Hu J, Wang JL (2012) Competitive adsorption of Pb (II), cu (II) and Zn (II) onto xanthate-modified magnetic chitosan. J Hazard Mater 221–222:55–161

    Google Scholar 

Download references

Acknowledgement

The author is thankful to the Department of Biotechnology, New Delhi (Project No. BT/PR21245/AAQ/3/830/2016), for financial assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, J. (2020). Biopolymers and Their Application in Wastewater Treatment. In: Bharagava, R. (eds) Emerging Eco-friendly Green Technologies for Wastewater Treatment. Microorganisms for Sustainability, vol 18. Springer, Singapore. https://doi.org/10.1007/978-981-15-1390-9_11

Download citation

Publish with us

Policies and ethics