Skip to main content

Dynamics of SH Wave Propagation in Al/BaTiO3 Composite Structure

  • Conference paper
  • First Online:
Mathematical Modelling and Scientific Computing with Applications (ICMMSC 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 308))

  • 684 Accesses

Abstract

The present article manifests the transference of horizontally polarised shear (SH) wave in an aluminium (Al) plate overlying by a Functionally Graded Piezoelectric Material (FGPM) layer. The separation of variables method is adopted to find the solution. The phase velocity of the wave is calculated for both electrically open and short cases. The significant influence of various affecting parameters on the phase velocity curve is demonstrated through graphs. Findings may be applicable in the structural health monitoring, surface acoustic wave (SAW) devices and ultrasonic inspection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bleustein, J.L.: A new surface wave in piezoelectric materials. Appl. Phys. Lett. 13(12), 412–413 (1968)

    Article  Google Scholar 

  2. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations: Elements of the Linear Theory of Piezoelectricity and the Vibrations Piezoelectric Plates. Springer, Berlin (2013)

    Google Scholar 

  3. Wang, J., Yong, Y.K., Imai, T.: Finite element analysis of the piezoelectric vibrations of quartz plate resonators with higher-order plate theory. Int. J. Solids Struct. 36(15), 2303–2319 (1999)

    Article  Google Scholar 

  4. Kundu, S., Manna, S., Gupta, S.: Love wave dispersion in pre-stressed homogeneous medium over a porous half-space with irregular boundary surfaces. Int. J. Solids Struct. 51(21–22), 3689–3697 (2014)

    Article  Google Scholar 

  5. Singh, A.K., Parween, Z., Kumar, S.: Love-type wave propagation in a corrugated piezoelectric structure. J. Intel. Mater. Syst. Struct. 27(19), 2616–2632 (2016)

    Article  Google Scholar 

  6. Saroj, P.K., et al.: Love-type waves in functionally graded piezoelectric material (FGPM) sandwiched between initially stressed layer and elastic substrate. Waves Random Complex Media 25(4), 608–627 (2015)

    Article  MathSciNet  Google Scholar 

  7. Singhal, A., Sahu, S.A., Chaudhary, Soniya: Approximation of surface wave frequency in piezo-composite structure. Compos. Part B: Eng. 144, 19–28 (2018)

    Article  Google Scholar 

  8. Sahu, S.A., Mondal, S., Dewangan, N.: Polarized shear waves in functionally graded piezoelectric material layer sandwiched between corrugated piezomagnetic layer and elastic substrate. J. Sandwich Struct. Mater. (2017). 1099636217726330

    Google Scholar 

  9. Singh, M.K., et al.: Approximation of surface wave velocity in smart composite structure using Wentzel–Kramers–Brillouin method. J. Intell. Mater. Syst. Struct. (2018). 1045389X18786464

    Google Scholar 

  10. Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Love waves propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space. Ultrasonics 69, 83–89 (2016)

    Article  Google Scholar 

  11. Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Propagation behavior of SH waves in layered piezoelectric/piezomagnetic plates. Acta Mechanica 228(3), 1071–1081 (2017)

    Article  Google Scholar 

  12. Wang, Q., Wu, N., Quek, S.T.: Acoustic wave in piezoelectric coupled plates with open circuit. Int. J. Struct. Stab. Dyn. 10(02), 299–313 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the Science and Engineering Research Board (SERB), New Delhi, India for providing financial assistance through project No. YSS/2015/002057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonal Nirwal .

Editor information

Editors and Affiliations

Appendices

Appendix 1

For electrically open circuit case

$$ \begin{aligned} & Q_{11} = \left( {c_{44}^{F} + \frac{{\left( {e_{15}^{F} } \right)^{2} }}{{\varepsilon_{11}^{F} }}} \right)e^{{ - rh_{1} }} \left[ {r\text{Cos} \left( {\mu_{1} h_{1} } \right) + \mu_{1} \text{Sin} \left( {\mu_{1} h_{1} } \right)} \right], \\ & Q_{13\,} = m_{1} \,e_{15}^{F} \,e^{{ - m_{1} h_{1} }} ,Q_{14\,} = m_{2} \,e_{15}^{F} \,e^{{ - m_{2} h_{1} }} , \\ & Q_{12} = \left( {c_{44}^{F} + \frac{{\left( {e_{15}^{F} } \right)^{2} }}{{\varepsilon_{11}^{F} }}} \right)e^{{ - rh_{1} }} \left[ { - r\,\text{Sin} \left( {\mu_{1} h_{1} } \right) + \mu_{1} \text{Cos} \left( {\mu_{1} h_{1} } \right)} \right], \\ & Q_{15} = 0,Q_{16} = 0,Q_{21} = - m_{1} \varepsilon_{11}^{F} e^{{ - m_{1} h_{1} }} , \\ & Q_{22} = - m_{2} \varepsilon_{11}^{F} \,e^{{ - m_{2} h_{1} }} ,Q_{23} = Q_{24} = Q_{25} = Q_{26} = 0, \\ & Q_{31} = r\left( {c_{44}^{F} + \frac{{\left( {e_{15}^{F} } \right)^{2} }}{{\varepsilon_{11}^{F} }}} \right),Q_{32} = \mu_{1} \left( {c_{44}^{F} + \frac{{\left( {e_{15}^{F} } \right)^{2} }}{{\varepsilon_{11}^{F} }}} \right), \\ & Q_{33} = e_{15}^{F} m_{1} ,Q_{34} = e_{15}^{F} \,m_{2} Q_{35} = - m_{3} c_{44}^{H} ,Q_{36} = m_{4} c_{44}^{H} , \\ & Q_{41} = 1,Q_{42} = Q_{43} = Q_{44} = 0,Q_{45} = - 1, \\ & Q_{46} - 1,Q_{51} = \frac{{e_{15}^{F} }}{{\varepsilon_{11}^{F} }},Q_{52} = 0,Q_{53} = 1,Q_{54} = 1, \\ & Q_{55} = Q_{56} = Q_{61} = Q_{62} = Q_{63} = Q_{64} = 0, \\ & Q_{65} = m_{3} c_{44}^{H} e^{{m_{3} h_{2} }} ,Q_{66} = m_{4} c_{44}^{H} e^{{ - m_{4} h_{2} }} . \\ \end{aligned} $$

Appendix 2

For electrically short circuit case

$$ \begin{aligned} & Q_{11} = \left( {c_{44}^{F} + \frac{{\left( {e_{15}^{F} } \right)^{2} }}{{\varepsilon_{11}^{F} }}} \right)e^{{ - rh_{1} }} \left[ {r\text{Cos} \left( {\mu_{1} h_{1} } \right) + \mu_{1} \text{Sin} \left( {\mu_{1} h_{1} } \right)} \right], \\ & Q_{13\,} = m_{1} \,e_{15}^{F} \,e^{{ - m_{1} h_{1} }} ,Q_{14\,} = m_{2} \,e_{15}^{F} \,e^{{ - m_{2} h_{1} }} , \\ & Q_{12} = \left( {c_{44}^{F} + \frac{{\left( {e_{15}^{F} } \right)^{2} }}{{\varepsilon_{11}^{F} }}} \right)e^{{ - rh_{1} }} \left[ { - r\,\text{Sin} \left( {\mu_{1} h_{1} } \right) + \mu_{1} \text{Cos} \left( {\mu_{1} h_{1} } \right)} \right], \\ & Q_{15} = 0,Q_{16} = 0,Q_{25} = 0,Q_{26} = 0, \\ & Q_{21} = \frac{{e_{15}^{F} }}{{\varepsilon_{11}^{F} }}e^{{ - rh_{1} }} \,\text{Cos} \left( {\mu_{1} h_{1} } \right),Q_{22} = - \frac{{e_{15}^{F} }}{{\varepsilon_{11}^{F} }}e^{{ - rh_{1} }} \text{Sin} \left( {\mu_{1} h_{1} } \right), \\ & Q_{23} = e^{{ - m_{1} h_{1} }} ,Q_{24} = e^{{ - m_{2} h_{1} }} \\ & Q_{31} = r\left( {c_{44}^{F} + \frac{{\left( {e_{15}^{F} } \right)^{2} }}{{\varepsilon_{11}^{F} }}} \right),Q_{32} = \mu_{1} \left( {c_{44}^{F} + \frac{{\left( {e_{15}^{F} } \right)^{2} }}{{\varepsilon_{11}^{F} }}} \right), \\ & Q_{33} = e_{15}^{F} m_{1} ,Q_{34} = e_{15}^{F} \,m_{2} Q_{35} = - m_{3} c_{44}^{H} , \\ & Q_{36} = m_{4} c_{44}^{H} ,Q_{41} = 1,Q_{42} = Q_{43} = Q_{44} = 0, \\ & Q_{45} = - 1,Q_{46} - 1,Q_{51} = \frac{{e_{15}^{F} }}{{\varepsilon_{11}^{F} }},Q_{52} = 0,Q_{53} = 1, \\ & Q_{54} = 1,Q_{55} = Q_{56} = Q_{61} = Q_{62} = Q_{63} = Q_{64} = 0, \\ & Q_{65} = m_{3} c_{44}^{H} e^{{m_{3} h_{2} }} ,Q_{66} = m_{4} c_{44}^{H} e^{{ - m_{4} h_{2} }} . \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nirwal, S., Sahu, S.A. (2020). Dynamics of SH Wave Propagation in Al/BaTiO3 Composite Structure. In: Manna, S., Datta, B., Ahmad, S. (eds) Mathematical Modelling and Scientific Computing with Applications. ICMMSC 2018. Springer Proceedings in Mathematics & Statistics, vol 308. Springer, Singapore. https://doi.org/10.1007/978-981-15-1338-1_8

Download citation

Publish with us

Policies and ethics