Skip to main content

Effect of Source Geometry on Interdependent Calcium and Inositol 1; 4; 5-Trisphosphate Dynamics in a Cardiac Myocyte Cell

  • Conference paper
  • First Online:
Mathematical Modelling and Scientific Computing with Applications (ICMMSC 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 308))

Abstract

Intracellular calcium governs the most versatile and universal signalling mechanism in living systems which includes contraction of the cardiac tissues, information processing in the brain, release of digestive enzymes by the liver etc. Various investigations have been made on study of calcium signalling in cardiac myocyte to understand its mechanisms. But most of existing investigations have mainly focused on study of calcium signalling in cardiac myocyte cell without paying attention on interdependence of calcium signalling and inositol 1; 4; 5-trisphosphate signalling. In this paper, we propose a mathematical model to understand the impact of the source geometry of calcium on these coupled signalling processes. This study suggests that the source geometry plays a vital role in these signalling processes. Also, calcium and inositol 1; 4; 5-trisphosphate shows a beautiful coordination with each other, which explains the role of inositol 1; 4; 5-trisphosphate in calcium signalling in cardiac myocyte cell. Such studies will provide the better understanding of various factors involved in calcium signalling in cardiac myocytes, which as a result will be of great use to biomedical scientists for making protocols for various heart diseases and their cure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adkins, C.E., Taylor, C.W.: Lateral inhibition of inositol \(1, 4, 5\)-trisphosphate receptors by cytosolic \(\rm {Ca}^{2+}\). Current Biol. 9(19), 1115–1118 (1999)

    Article  Google Scholar 

  2. Allbritton, N.L., Meyer, T., Stryer, L.: Range of messenger action of calcium ion and inositol \(1, 4, 5\)-trisphosphate. Science New York then Washington 258, 1812–1812 (1992)

    Article  Google Scholar 

  3. Ciapa, B., Pesando, D., Wilding, M., Whitaker, M.: Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature 368(6474), 875–878 (1994)

    Article  Google Scholar 

  4. De Young, G.W., Keizer, J.: A single-pool inositol \(1, 4, 5\)-trisphosphate-receptor-based model for agonist-stimulated oscillations in \(\rm {Ca}^{2+}\) concentration. Proc. Natl. Acad. Sci. 89(20), 9895–9899 (1992)

    Article  Google Scholar 

  5. Dupont, G., Goldbeter, A.: One-pool model for \(\rm {Ca}^{2+}\) oscillations involving \(\rm {Ca}^{2+}\) and inositol \(1, 4, 5\)-trisphosphate as co-agonists for \(\rm {Ca}^{2+}\) release. Cell Calcium 14(4), 311–322 (1993)

    Article  Google Scholar 

  6. Falcke, M.: Buffers and oscillations in intracellular \(\rm {Ca}^{2+}\) dynamics. Biophys. J. 84(1), 28–41 (2003)

    Article  Google Scholar 

  7. Fink, C.C., Slepchenko, B., Moraru, I.I., Watras, J., Schaff, J.C., Loew, L.M.: An image-based model of calcium waves in differentiated neuroblastoma cells. Biophys. J. 79(1), 163–183 (2000)

    Article  Google Scholar 

  8. Goonasekera, S.A., Hammer, K., Auger-Messier, M., Bodi, I., Chen, X., Zhang, H., Reiken, S., Elrod, J.W., Correll, R.N., York, A.J., et al.: Decreased cardiac l-type \(\rm {Ca}^{2+}\) channel activity induces hypertrophy and heart failure in mice. J. Clin. Investig. 122(1), 280 (2012)

    Google Scholar 

  9. Jha, A., Adlakha, N.: Finite element model to study the effect of exogenous buffer on calcium dynamics in dendritic spines. Int. J. Model., Simul., Sci. Comput. 5(02), 1350027 (2014)

    Article  Google Scholar 

  10. Jha, B.K., Adlakha, N., Mehta, M.: Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer. Int. J. Biomath. 7(03), 1450031 (2014)

    Article  MathSciNet  Google Scholar 

  11. Klipp, E., Liebermeister, W.: Mathematical modeling of intracellular signaling pathways. BMC Neurosci. 7(1), S10 (2006)

    Google Scholar 

  12. Kotwani, M., Adlakha, N., Mehta, M.: Numerical model to study calcium diffusion in fibroblasts cell for one dimensional unsteady state case. Appl. Math. Sci. 6(102), 5063–5072 (2012)

    MATH  Google Scholar 

  13. Kotwani, M., Adlakha, N., Mehta, M.: Finite element model to study the effect of buffers, source amplitude and source geometry on spatio-temporal calcium distribution in fibroblast cell. J. Med. Imaging Health Inform. 4(6), 840–847 (2014)

    Article  Google Scholar 

  14. Luo, C.h., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. i. Simulations of ionic currents and concentration changes. Circ. Res. 74(6), 1071–1096 (1994)

    Article  Google Scholar 

  15. Luo, C.h., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. ii. After depolarizations, triggered activity, and potentiation. Circ. Res. 74(6), 1097–1113 (1994)

    Article  Google Scholar 

  16. Manhas, N., Pardasani, K.: Modelling mechanism of calcium oscillations in pancreatic acinar cells. J. Bioenerg. Biomembr. 46(5), 403–420 (2014)

    Article  Google Scholar 

  17. Manhas, N., Sneyd, J., Pardasani, K.: Modelling the transition from simple to complex \(\rm {Ca}^{2+}\) oscillations in pancreatic acinar cells. J. Biosci. 39(3), 463–484 (2014)

    Article  Google Scholar 

  18. Michailova, A., DelPrincipe, F., Egger, M., Niggli, E.: Spatiotemporal features of \(\rm {Ca}^{2+}\) buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum. Biophys. J. 83(6), 3134–3151 (2002)

    Article  Google Scholar 

  19. Naik, P.A., Pardasani, K.R.: One dimensional finite element model to study calcium distribution in oocytes in presence of VGCC, RyR and buffers. J. Med. Imaging Health Inform. 5(3), 471–476 (2015)

    Article  Google Scholar 

  20. Naik, P.A., Pardasani, K.R.: Finite element model to study calcium distribution in oocytes involving voltage gated \(\rm {Ca}^{2+}\) channel, ryanodine receptor and buffers. Alex. J. Med. 52(1), 43–49 (2016)

    Article  Google Scholar 

  21. Nivala, M., de Lange, E., Rovetti, R., Qu, Z.: Computational modeling and numerical methods for spatiotemporal calcium cycling in ventricular myocytes. Front. Physiol. 3, 114 (2012)

    Google Scholar 

  22. Panday, S., Pardasani, K.R.: Finite element model to study effect of advection diffusion and \(\rm {Na}^+/\rm {Ca}^{2+}\) exchanger on \(\rm {Ca}^{2+}\) distribution in oocytes. J. Med. Imaging Health Inform. 3(3), 374–379 (2013)

    Article  Google Scholar 

  23. Pathak, K., Adlakha, N.: Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes. Alex. J. Med. 52(3), 261–268 (2016)

    Article  Google Scholar 

  24. Pathak, K.B., Adlakha, N.: Finite element model to study calcium signalling in cardiac myocytes involving pump, leak and excess buffer. J. Med. Imaging Health Inform. 5(4), 683–688 (2015)

    Article  Google Scholar 

  25. Pathak, K.B., Adlakha, N.: Finite element model to study one dimensional calcium dynamics in cardiac myocytes. J. Multiscale Model. 6(02), 1550003 (2015)

    Article  MathSciNet  Google Scholar 

  26. Shannon, T.R., Wang, F., Puglisi, J., Weber, C., Bers, D.M.: A mathematical treatment of integrated ca dynamics within the ventricular myocyte. Biophys. J. 87(5), 3351–3371 (2004)

    Article  Google Scholar 

  27. Smith, G.D., Keizer, J.E., Stern, M.D., Lederer, W.J., Cheng, H.: A simple numerical model of calcium spark formation and detection in cardiac myocytes. Biophys. J. 75(1), 15–32 (1998)

    Article  Google Scholar 

  28. Sneyd, J., Sherratt, J.: On the propagation of calcium waves in an inhomogeneous medium. SIAM J. Appl. Math. 57(1), 73–94 (1997)

    Article  MathSciNet  Google Scholar 

  29. Stewart, B.D., Scott, C.E., McCoy, T.P., Yin, G., Despa, F., Despa, S., Kekenes-Huskey, P.M.: Computational modeling of amylin-induced calcium dysregulation in rat ventricular cardiomyocytes. Cell Calcium 71, 65–74 (2018)

    Article  Google Scholar 

  30. Swaminathan, D.: Mathematical modeling of intracellular calcium signaling: a study of \(IP_3\) receptor models. Ohio University (2010)

    Google Scholar 

  31. Tewari, S., Pardasani, K.: Finite difference model to study the effects of \(\rm {Na}^+\) influx on cytosolic \(\rm {Ca}^{2+}\) diffusion. World Acad. Sci. Eng. Technol. 15, 670–675 (2008)

    Google Scholar 

  32. Tripathi, A., Adlakha, N.: Finite volume model to study calcium diffusion in neuron cell under excess buffer approximation. Int. J. Math. Sci. Engg. Appl. (IJMSEA) 5, 437–447 (2011)

    Google Scholar 

  33. Wagner, J., Fall, C.P., Hong, F., Sims, C.E., Allbritton, N.L., Fontanilla, R.A., Moraru, I.I., Loew, L.M., Nuccitelli, R.: A wave of \(ip_3\) production accompanies the fertilization \(\rm {Ca}^{2+}\) wave in the egg of the frog, xenopus laevis: theoretical and experimental support. Cell Calcium 35(5), 433–447 (2004)

    Article  Google Scholar 

  34. Watras, J., Ehrlich, B.E., et al.: Bell-shaped calcium-response curves of \(ins (l, 4, 5) p_3\)-and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351(6329), 751–754 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Biotechnology, New Delhi, India for providing support in the form of Bioinformatics Infrastructure Facility for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, N., Adlakha, N. (2020). Effect of Source Geometry on Interdependent Calcium and Inositol 1; 4; 5-Trisphosphate Dynamics in a Cardiac Myocyte Cell. In: Manna, S., Datta, B., Ahmad, S. (eds) Mathematical Modelling and Scientific Computing with Applications. ICMMSC 2018. Springer Proceedings in Mathematics & Statistics, vol 308. Springer, Singapore. https://doi.org/10.1007/978-981-15-1338-1_6

Download citation

Publish with us

Policies and ethics