Skip to main content

Water Boundary Layer Flow over an Exponentially Permeable Stretching Sheet with Variable Viscosity and Prandtl Number

  • Conference paper
  • First Online:
Mathematical Modelling and Scientific Computing with Applications (ICMMSC 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 308))

  • 660 Accesses

Abstract

The present work focus on water boundary layer flow over an exponential permeable stretching sheet in the presence of suction/injection with variable viscosity and prandtl number. The nonlinear partial differential equations governing flow and thermal fields are presented in non-dimensional form using suitable non-similar transformation. Finally non dimensional partial differential the equations are solved by the implicit finite difference method in combination with the Quasi-linearization technique. The numerical results for skin-friction and local Nusselt number are shown graphically to display effects of physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Pr :

Prandtl number

f :

Dimensionless streamfunction

\(C_{p}\) :

Specific heat at constant pressure

T :

Temperature

g :

Acceleration due to gravity

\(U_{W}\) :

Moving plate velocity

\(Nu_{x}\) :

Nusselt number

\(Cf_{x}\) :

Skin friction coefficient

\(U_{\infty }\) :

Free stream velocity

v :

Velocity component in the y direction

u :

Velocity component in the x direction

\(\nu \) :

Kinematic viscosity

\(\rho \) :

Density

xy:

Cartesian coordinates

\(Re_{L}\) :

Local Reynolds number

\(\mu \) :

Dynamic viscosity

References

  1. ElbElbashbeshy, E.M.A.: Heat transfer over an exponentially stretching continuous surface with suction. Arch. Mech. 53, 643–651 (2001)

    Google Scholar 

  2. Zaimi, K., Ishak, A.: Boundary layer flow and heat transfer over a permeable stretching /shrinking sheet with convective boundary condition. J. Appl. Fluid Mech. 8, 499–505 (2015)

    Article  Google Scholar 

  3. Naramgari, S., Sulochana, C.: MHD flow over a permeable stretching sheet of a nanofluid with suction/injection. Alexandria Eng. J. 55, 819–827 (2016)

    Article  Google Scholar 

  4. Hafidzuddin, E.H., Nazar, R., Arifin, N.M., Pop, I.: Boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity. J. Appl. Fluid Mech. 9, 2025–2036 (2016)

    Article  Google Scholar 

  5. Ishak, I., Nazar, R., Pop, I.: The effects of transpiration on the flow and heat transfer over a moving permeable surface in a parallel stream, chem. Eng. J. 148, 63–67 (2009)

    Google Scholar 

  6. Patil, P.M., Latha, D.N., Roy, S., Momoniat, E.: Non similar solutions of mixed convection flow from an exponentially stretching surface. Ain Shams Eng. J. 8, 697–705 (2015)

    Article  Google Scholar 

  7. Olusoji, E.: Heat and mass transfer in MHD micropolar fluid flow over a stretching sheet with velocity and thermal slip conditions (2018)

    Google Scholar 

  8. Hayat, T., Imtiaz, M., Alsaedi, A.: MHD flow of Nanofluid over permeable stretching sheet with convective boundary conditions. Open J. Fluid Dyn. 8(2), 195 (2014)

    Google Scholar 

  9. Srinvasulu, T., Bandari, Shankar: MHD boundary layer flow of nanofluid over a nonlinear stretching sheet with effect of non-uniform heat source and chemical reaction. J. Nanofluids 6(4), 637–646 (2017)

    Article  Google Scholar 

  10. Hayat, T., Shafiq, A., Alsaedi, A., Shahzad, S.A.: Unsteady MHD flow over exponentially stretching sheet with slip conditions. Appl. Math. Mech. 37(2), 193–208 (2016)

    Article  MathSciNet  Google Scholar 

  11. Bidin, Biliana, Nazar, Roslinda: Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation. Eur. J. Sci. Res. 33, 710–717 (2009)

    Google Scholar 

  12. Cortel, R.: Fluid flow and radiative non linear heat transfer over a stretching sheet. J. King Saud Univ. Sci. 26, 161–167 (2014)

    Article  Google Scholar 

  13. Singh, P.J., Roy, S., Pop, I.: Unsteady mixed convection from a rotating vertical slender cylinder in an axial flow. Int. J. Heat Mass Transf. 51, 1423–1430 (2008)

    Article  Google Scholar 

  14. Tsou, F.K., Sparrow, E.M., Goldstein, R.J.: Flow and heat transfer in the boundary layer on a continuous moving surface. Int. Heat Mass Transfer 10, 219–235 (1967)

    Article  Google Scholar 

  15. Soundalgekar, V.M., Murty, T.V.R.: Heat transfer in flow past a continuous moving plate with variable temperature. Warme-und Stoffubertragung 14, 91–93 (1980)

    Article  Google Scholar 

  16. Ali, M.E.: On thermal boundary layer on a power-law stretched surface with suction or injection. Int. J. Heat Fluid Flow 16, 280–290 (1995)

    Article  Google Scholar 

  17. Moutsoglou, T.S.Chen: Buoyancy effects in boundary layers on inclined, continuous, moving sheets. ASME J. Heat Transf. 102, 371–373 (1980)

    Article  Google Scholar 

  18. Chen, C.H.: Laminar mixed convection adjacent to vertical, continuously stretching sheets. Heat Mass Transf. 33, 471–476 (1998)

    Article  Google Scholar 

  19. Varga, R.S.: Matrix Itrative Analysis. Prentice-Hall, Englewood Cliffs, NJ (2000)

    Book  Google Scholar 

  20. Tsou, F.K., Sparrow, E.M., Goldstein, R.J.: Flow and heat transfer in the boundary layer on a continuous moving surface. Int. J. Heat Mass Transf. 10, 219–235 (1967)

    Article  Google Scholar 

  21. Moutsoglou, A., Chen, T.S.: Buoyancy effects in boundary layers on inclined continuous moving sheets. ASME J. Heat Transf. 102, 371–373 (1980)

    Article  Google Scholar 

  22. Chen, C.H.: Laminar mixed convection adjacent to vertical continuously stretching sheets. Heat Mass Transf. 33, 471–476 (1998)

    Article  Google Scholar 

  23. Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 71st edn. CRC Press, BocaRaton, FL (1990)

    Google Scholar 

Download references

Acknowledgements

Let me thanks organization team of International Conference on Mathematical Modelling and Scientific Computing who brought the platform to express our idea about mathematical modelling and simulation in applied mathematics. The current work is completely based on modelling of fluid dynamics problem and solution has been obtained by using finite difference method and given in terms of velocity profile (F), temperature profile \((\theta )\), skin friction coefficient \((C_{fx} \left( Re_L\xi exp({\xi })\right) ^{1/2})\) and heat transfer coefficients \((Nu_x (Re_L\xi exp({\xi }))^{-1/2})\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, A.K., Govindaraj, N., Roy, S. (2020). Water Boundary Layer Flow over an Exponentially Permeable Stretching Sheet with Variable Viscosity and Prandtl Number. In: Manna, S., Datta, B., Ahmad, S. (eds) Mathematical Modelling and Scientific Computing with Applications. ICMMSC 2018. Springer Proceedings in Mathematics & Statistics, vol 308. Springer, Singapore. https://doi.org/10.1007/978-981-15-1338-1_16

Download citation

Publish with us

Policies and ethics