Skip to main content

Active Control with the Method of Receptances: Recent Progresses and Its Application in Active Aeroelastic Control

  • Conference paper
  • First Online:
Mathematical Modelling and Scientific Computing with Applications (ICMMSC 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 308))

  • 706 Accesses

Abstract

The design of active control for large and complex engineering structures requires accurate modeling and prediction of their dynamic response and instabilities. The performance of traditional model based control may be limited due to the errors in model approximation, size of the problem and/or availability of limited data for realizing active control. To overcome some of these challenges the method of receptances is developed. This method allows design and computation of controller gains based on a modest size of receptance matrices which can be extracted from transfer functions associated with available sensors and actuators. The area of active aeroelastic control deals with developing wing technology for the next generation aircrafts to achieve increased performance by controlling and manipulating the aeroelastic response by active means. In these applications, receptance based controller design is found to be promising as it eliminates the modeling of complex aeroelastic interaction between elastic structure and surrounding aerodynamics. In this paper, fundamental of the receptance based control is introduced and recent progress in this area is summarized. The effectiveness of the controller designed with on-board sensors (embedded) and actuators (control surfaces) for suppressing the flutter instabilities and flutter boundary extension is demonstrated with numerical examples. The performance of the controller such as its ability to control prescribed modes of interest without influencing the other is also presented. Ongoing research in this area is briefly summarized in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soong, T.T., Dargush, G.F.: Passive energy dissipation systems in structural engineering (1997)

    Google Scholar 

  2. Piersol, A.G., Harris, C.M.: Harri’s Shock and Vibration Handbook, 5th edn. McGraw-Hill (2017)

    Google Scholar 

  3. Janocha, H.: Adaptronics and smart structures. Springer, Berlin (1999)

    Book  Google Scholar 

  4. Achkire, Y., Preumont, A.: Active tendon control of cable-stayed bridges. Earthq. Eng. Struct. Dyn. 25(6), 585–597 (1996)

    Article  Google Scholar 

  5. Housner, G.W., et al.: Structural control: past, present, and future. J. Eng. Mech. 123(9), 897–971 (1997)

    Article  Google Scholar 

  6. Soong, T.T., Costantinou, M.C. (eds.): Passive and Active Structural Vibration Control in Civil Engineering, vol. 345. Springer, Berlin (2014)

    Google Scholar 

  7. Balas, M.: Trends in large space structure control theory: fondest hopes, wildest dreams. IEEE Trans. Autom. Control 27(3), 522–535 (1982)

    Article  MATH  Google Scholar 

  8. Sutton, T.J., Elliott, S.J., Brennan, M.J., Heron, K.H., Jessop, D.A.C.: Active isolation of multiple structural waves on a helicopter gearbox support strut. J. Sound Vib. 205(1), 81–101 (1997)

    Article  Google Scholar 

  9. Kessler, C.: Active rotor control for helicopters: motivation and survey on higher harmonic control. CEAS Aeronaut. J. 1(1–4), 3 (2011)

    Article  Google Scholar 

  10. Fuller, C.C., Elliott, S., Nelson, P.A.: Active Control of Vibration. Academic Press, London (1996)

    Book  Google Scholar 

  11. Clark, R.L., Saunders, W.R., Gibbs, G.P.: Adaptive Structures: Dynamics and Control, vol. 28, No. 2. Wiley, New York (1998)

    Google Scholar 

  12. Symans, M.D., Constantinou, M.C.: Semi-active control systems for seismic protection of structures: a state-of-the-art review. Eng. Struct. 21(6), 469–487 (1999)

    Article  Google Scholar 

  13. Giurgiutiu, V.: Review of smart-materials actuation solutions for aeroelastic and vibration control. J. Intell. Mater. Syst. Struct. 11(7), 525–544 (2000)

    Article  Google Scholar 

  14. Irschik, H.: A review on static and dynamic shape control of structures by piezoelectric actuation. Eng. Struct. 24(1), 5–11 (2002)

    Article  Google Scholar 

  15. Preumont, A., Seto, K.: Active Control of Structures. Wiley, Chichester (2008)

    Book  Google Scholar 

  16. Mottershead, J.E.: On the zeros of structural frequency response functions and their sensitivities. Mech. Syst. Sig. Process. 12(5), 591–597 (1998)

    Article  Google Scholar 

  17. White, B.A.: Eigenstructure assignment: a survey. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 209(1), 1–11 (1995)

    Google Scholar 

  18. Inman, D.J.: Vibration with Control. Wiley, Chichester (2017)

    Book  Google Scholar 

  19. Ogata, K., Yang, Y.: Modern Control Engineering, vol. 4. Prentice Hall, India (2002)

    Google Scholar 

  20. Datta, B.: Numerical Methods for Linear Control Systems, vol. 1. Academic Press, Cambridge (2004)

    Google Scholar 

  21. Balas, M.J.: Active control of flexible systems. J. Optim. Theory Appl. 25(3), 415–436 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kautsky, J., Nichols, N.K., Van Dooren, P.: Robust pole assignment in linear state feedback. Int. J. Control 41(5), 1129–1155 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Datta, B.N., Elhay, S., Ram, Y.M.: Orthogonality and partial pole assignment for the symmetric definite quadratic pencil. Linear Algebra Appl. 257, 29–48 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Datta, B.N., Elhay, S., Ram, Y.A., Sarkissian, D.R.: Partial eigenstructure assignment for the quadratic pencil. J. Sound Vib. 230(1), 101–110 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Datta, B.N.: Finite-element model updating, eigenstructure assignment and eigenvalue embedding techniques vibrating systems. Mech. Syst. Sig. Process. 16(1), 83–96 (2002)

    Article  Google Scholar 

  26. Ram, Y.M., Mottershead, J.E.: Receptance method in active vibration control. AIAA J. 45(3), 562–567 (2007)

    Article  Google Scholar 

  27. Mottershead, J.E., Tehrani, M.G., James, S., Ram, Y.M.: Active vibration suppression by pole-zero placement using measured receptances. J. Sound Vib. 311(3–5), 1391–1408 (2008)

    Article  Google Scholar 

  28. Mottershead, J.E., Tehrani, M.G., Ram, Y.M.: Assignment of eigenvalue sensitivities from receptance measurements. Mech. Syst. Sig. Process. 23(6), 1931–1939 (2009)

    Article  Google Scholar 

  29. Ouyang, H.: Pole assignment of friction-induced vibration for stabilisation through state-feedback control. J. Sound Vib. 329(11), 1985–1991 (2010)

    Article  Google Scholar 

  30. Ouyang, H.J.: A hybrid control approach for pole assignment to second-order asymmetric systems. Mech. Syst. Sig. Process. 25(1), 123–132 (2011)

    Article  Google Scholar 

  31. Tehrani, M.G., Elliott, R.N.R., Mottershead, J.E.: Partial pole placement in structures by the method of receptances: theory and experiments. J. Sound Vib. 329(24), 5017–5035 (2010)

    Article  Google Scholar 

  32. Tehrani, M.G., Mottershead, J.E., Shenton, A.T., Ram, Y.M.: Robust pole placement in structures by the method of receptances. Mech. Syst. Sig. Process. 25(1), 112–122 (2011)

    Article  Google Scholar 

  33. Mottershead, J.E., Tehrani, M.G., Ram, Y.M.:. Eigenvalue assignment problems in vibration using measured receptances: passive modification and active control. In: Gladwell, G.M.L., Morassi, A. (eds.) Dynamical Inverse Problems: Theory and Application, pp. 179–202 (2011)

    Chapter  MATH  Google Scholar 

  34. Ouyang, H., Richiedei, D., Trevisani, A.: Pole assignment for control of flexible link mechanisms. J. Sound Vib. 332(12), 2884–2899 (2013)

    Article  Google Scholar 

  35. Tehrani, M.G., Ouyang, H.: Receptance-based partial pole assignment for asymmetric systems using state-feedback. Shock Vib. 19(5), 1135–1142 (2012)

    Article  Google Scholar 

  36. Mottershead, J.E., Tehrani, M.G., James, S., Court, P.: Active vibration control experiments on an AgustaWestland W30 helicopter airframe. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 226(C6), 1504–1516 (2012)

    Article  Google Scholar 

  37. Ram, Y.M., Mottershead, J.E.: Multiple-input active vibration control by partial pole placement using the method of receptances. Mech. Syst. Sig. Process. 40(2), 727–735 (2013)

    Article  Google Scholar 

  38. Ram, Y.M., Mottershead, J.E., Tehrani, M.G.: Partial pole placement with time delay in structures using the receptance and the system matrices. Linear Algebra Appl. 434(7), 1689–1696 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bai, Z.-J., Chen, M.-X., Yang, J.-K.: A multi-step hybrid method for multi-input partial quadratic eigenvalue assignment with time delay. Linear Algebra Appl. 437(7), 1658–1669 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Bai, Z.J., Chen, M.X., Datta, B.N.: Minimum norm partial quadratic eigenvalue assignment with time delay in vibrating structures using the receptance and the system matrices. J. Sound Vib. 332(4), 780–794 (2013)

    Article  Google Scholar 

  41. Bai, Z.J., Yang, J.K., Datta, B.N.: Robust partial quadratic eigenvalue assignment with time delay using the receptance and the system matrices. J. Sound Vib. 384, 1–14 (2016)

    Article  Google Scholar 

  42. Singh, K.V., Ouyang, H.: Pole assignment using state feedback with time delay in friction-induced vibration problems. Acta Mech. 224(3), 645–656 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xiang, J.W., Zhen, C., Li, D.C.: Partial pole assignment with time delay by the receptance method using multi-input control from measurement output feedback. Mech. Syst. Signal Process. 66–67, 743–755 (2016)

    Article  Google Scholar 

  44. Wang, X.T., Zhang, L.: Partial eigenvalue assignment with time delay in high order system using the receptance. Linear Algebra Appl. 523, 335–345 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Santos, T.L.M., Araujo, J.M., Franklin, T.S.: Receptance-based stability criterion for second-order linear systems with time-varying delay. Mech. Syst. Signal Process. 110, 428–441 (2018)

    Article  Google Scholar 

  46. Tehrani, M.G., Wilmshurst, L., Elliott, S.J.: Receptance method for active vibration control of a nonlinear system. J. Sound Vib. 332(19), 4440–4449 (2013)

    Article  Google Scholar 

  47. Zhen, C., Jiffri, S., Li, D.C., Xiang, J.W., Mottershead, J.E.: Feedback linearisation of nonlinear vibration problems: a new formulation by the method of receptances. Mech. Syst. Sig. Process. 98, 1056–1068 (2018)

    Article  Google Scholar 

  48. Maha, A., Ram, Y.M.: The method of receptances for continuous rods. J. Appl. Mech. Trans. ASME 81(7), 071009 (2014)

    Article  Google Scholar 

  49. Singh, K.V., Ling, X.X.: Active control of viscoelastic systems by the method of receptance. J. Vib. Acoust. Trans. ASME 140(2) (2018)

    Google Scholar 

  50. Tsai, S.-H., Ouyang, H., Chang, J.-Y.: Inverse structural modifications of a geared rotor-bearing system for frequency assignment using measured receptances. Mech. Syst. Signal Process. 110, 59–72 (2018)

    Article  Google Scholar 

  51. Xia, M.L., Li, S.: A combined approach for active vibration control of fluid-loaded structures using the receptance method. Arch. Appl. Mech. 88(10), 1683–1694 (2018)

    Article  Google Scholar 

  52. Wei, X.J., Mottershead, J.E., Ram, Y.M.: Partial pole placement by feedback control with inaccessible degrees of freedom. Mech. Syst. Signal Process. 70–71, 334–344 (2016)

    Article  Google Scholar 

  53. Liu, Z.H., Li, W.Y., Ouyang, H.J., Wang, D.H.: Eigenstructure assignment in vibrating systems based on receptances. Arch. Appl. Mech. 85(6), 713–724 (2015)

    Article  Google Scholar 

  54. Richiedei, D., Trevisani, A.: Simultaneous active and passive control for eigenstructure assignment in lightly damped systems. Mech. Syst. Signal Process. 85, 556–566 (2017)

    Article  Google Scholar 

  55. Wei, X., Maha, A., Ram, Y., Mottershead, J.E.: The role of controllability and observability in partial pole placement by the method of receptance. In: International Conference on Noise and Vibration Engineering (ISMA) (2014)

    Google Scholar 

  56. Liang, Y., Yamaura, H., Ouyang, H.J.: Active assignment of eigenvalues and eigen-sensitivities for robust stabilization of friction-induced vibration. Mech. Syst. Sig. Process. 90, 254–267 (2017)

    Article  Google Scholar 

  57. Liu, H., Xu, J.: A multi-step method for partial eigenvalue assignment problem of high order control systems. Mech. Syst. Signal Process. 94, 346–358 (2017)

    Article  Google Scholar 

  58. Belotti, R., Ouyang, H.J., Richiedei, D.: A new method of passive modifications for partial frequency assignment of general structures. Mech. Syst. Sig. Process. 99, 586–599 (2018)

    Article  Google Scholar 

  59. Bai, Z.-J., Wan, Q.-Y.: Partial quadratic eigenvalue assignment in vibrating structures using receptances and system matrices. Mech. Syst. Sig. Process. 88, 290–301 (2017)

    Article  Google Scholar 

  60. Bai, Z.J., Lu, M., Wan, Q.Y.: Minimum norm partial quadratic eigenvalue assignment for vibrating structures using receptances and system matrices. Mech. Syst. Sig. Process. 112, 265–279 (2018)

    Article  Google Scholar 

  61. Dowell, E.H.: A Modern Course in Aeroelasticity, vol. 3. In: Curtiss, H.C., Scanlan, R.H., Sisto, F. (eds.). Kluwer Academic Publishers, Dordrecht, The Netherlands (1989)

    Google Scholar 

  62. Rodden, W.P.: Theoretical and Computational Aeroelasticity. Crest Publication (2011)

    Google Scholar 

  63. Tewari, A.: Aeroservoelasticity: Modeling and Control. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  64. Wright, J.R., Cooper, J.E.: Introduction to Aircraft Aeroelasticity and Loads, vol. 20. Wiley, Chichester (2008)

    Google Scholar 

  65. Singh, K.V., McDonough, L.A., Mottershead, J., Cooper, J.: Active aeroelastic control using the receptance method. In: ASME 2010 International Mechanical Engineering Congress and Exposition, pp. 137–146 (2010) (January)

    Google Scholar 

  66. McDonough, L.A., Singh, K.V., Kolonay, R.: Active control for coupled unsteady aeroelastic models. In: Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, IFASD-2011-076, Paris, France, pp. 26–30 (2011)

    Google Scholar 

  67. Papatheou, E., Wei, X., Jiffri, S., Tehrani, M.G., Bode, S., Singh, K.V., Cooper, J.E.: Flutter control using vibration test data: theory, rig design and preliminary results. In: International Conference on Noise and Vibration Engineering, Leuven, Belgium, September, pp. 17–19 (2012) (September)

    Google Scholar 

  68. Singh, K.V., McDonough, L.A., Kolonay, R., Cooper, J.E.: Receptance-based active aeroelastic control using multiple control surfaces. J. Aircr. 51(1), 335–342 (2014)

    Article  Google Scholar 

  69. Singh, K.V., Brown, R.N., Kolonay, R.: Receptance-based active aeroelastic control with embedded control surfaces having actuator dynamics. J. Aircr. 53(3), 830–845 (2016)

    Article  Google Scholar 

  70. Brown, R.N., Singh, K.V.: Optimal sizing and configurations of the control surfaces for active aeroelastic control. In: AIAA Atmospheric Flight Mechanics Conference, p. 2241 (2015)

    Google Scholar 

  71. Brown, R., Singh, K.V.: Optimal selection of control surfaces for active aeroelastic control of prescribed modes. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 0712 (2016)

    Google Scholar 

  72. Brown, R.N., Singh, K.V., Kolonay, R.M.: Optimal sizing and placement of control surfaces for active aeroservoelastic control. In: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 0569 (2017)

    Google Scholar 

  73. Wei, X., Mottershead, J.E.:. Limit cycle assignment in nonlinear aeroelastic systems using describing functions and the receptance method. In: Topics in Modal Analysis, vol. 7, pp. 701–713. Springer, New York, NY (2014)

    Google Scholar 

  74. Zhen, C., Li, D., Xiang, J.: A modified receptance method for active control of a nonlinear aeroelastic system. In: 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1855 (2015)

    Google Scholar 

  75. Wu, Z., Cooper, J.E.: Active flutter suppression combining the receptance method and flutter margin. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1227 (2016)

    Google Scholar 

  76. Jiffri, S., Fichera, S., Mottershead, J.E., Da Ronch, A.: Experimental nonlinear control for flutter suppression in a nonlinear aeroelastic system. J. Guid. Control Dyn. 40(8), 1925–1938 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Vikram Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, K.V. (2020). Active Control with the Method of Receptances: Recent Progresses and Its Application in Active Aeroelastic Control. In: Manna, S., Datta, B., Ahmad, S. (eds) Mathematical Modelling and Scientific Computing with Applications. ICMMSC 2018. Springer Proceedings in Mathematics & Statistics, vol 308. Springer, Singapore. https://doi.org/10.1007/978-981-15-1338-1_13

Download citation

Publish with us

Policies and ethics