Skip to main content

Gametes and Fertilization

  • Chapter
  • First Online:
Japanese Marine Life

Abstract

Reproduction underpins the life cycles, population dynamics, and ecology of marine organisms which have a wide variety of strategies, including sexual and asexual, gonochorism and hermaphroditism, as well as internal or external fertilization. It is often easy to collect a large quantity of gametes from species with external fertilization. In some species, such as many Echinodermata, female gametes (oocytes and eggs) are semitransparent, which makes it possible to observe changes in intracellular structures during fertilization. For these reasons, gametes from marine organisms have contributed to the general knowledge of biology, e.g., the first observation of sperm penetration into an egg and studies on the motile machinery of flagella (microtubules and dyneins), hormonal regulation of spawning in marine invertebrates, and oocyte maturation and cell cycles. Sexual maturation in marine organisms varies among species and their habitats; however, most Japanese species are seasonal and spawn once a year. For experiments using gametes and their fertilization, it is important to know the time of the spawning or copulation. In this chapter, we focus on the gametes and fertilization of marine species, especially marine invertebrates. Reproduction of marine algae is described in Chap. 12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Christiaen, L., Wagner, E., Shi, W., & Levine, M. (2009). The sea squirt Ciona intestinalis. Cold Spring Harbor Protocols, 2009(12), 138. https://doi.org/10.1101/pdb.emo138

    Article  CAS  Google Scholar 

  • Dzyuba, V., & Cosson, J. (2014). Motility of fish spermatozoa: From external signaling to flagella response. Reproductive Biology, 14(3), 165–175. https://doi.org/10.1016/j.repbio.2013.12.005

    Article  PubMed  Google Scholar 

  • Harada, Y., et al. (2007). Characterization of a sperm factor for egg activation at fertilization of the newt Cynops pyrrhogaster. Developmental Biology, 306, 797–808. https://doi.org/10.1016/j.ydbio.2007.04.01

    Article  CAS  PubMed  Google Scholar 

  • Inaba, K. (2003). Molecular architecture of the sperm flagella: Molecules for motility and signaling. Zoological Science, 20(9), 1043–1056.

    Article  CAS  Google Scholar 

  • Inaba, K., & Mizuno, K. (2009). Purification of dyneins from sperm flagella. In S. M. King & G. J. Pazour (Eds.), Methods in cell biology (Vol. 92, pp. 49–63). Amsterdam: Elsevier.

    Google Scholar 

  • Kyozuka, K., Deguchi, R., Mohri, T., & Miyazaki, S. (1998). Injection of sperm extract mimics spatiotemporal dynamics of Ca2+ responses and progression of meiosis at fertilization of ascidian oocytes. Development, 125, 4099–4105.

    CAS  PubMed  Google Scholar 

  • Miyazaki, S., & Ito, M. (2006). Calcium signals for egg activation in mammals. Journal of Pharmacological Sciences, 100, 545–552.

    Article  CAS  Google Scholar 

  • Mizuno, K., Shiba, K., Okai, M., Takahashi, Y., Shitaka, Y., Oiwa, K., et al. (2012). Calaxin drives sperm chemotaxis by Ca2+-mediated direct modulation of a dynein motor. Proceedings of the National Academy of Sciences of the United States of America, 109, 20497–20502. https://doi.org/10.1073/pnas.1217018109

    Article  PubMed  PubMed Central  Google Scholar 

  • Morisawa, M., & Yoshida, M. (2005). Activation of motility and chemotaxis in the spermatozoa: From invertebrates to humans. Reproductive Medicine Biology, 4(2), 101–114. https://doi.org/10.1111/j.1447-0578.2005.00099.x

    Article  PubMed  Google Scholar 

  • Rakow, T. L., & Shen, S. S. (1990). Multiple stores of calcium are released in the sea urchin egg during fertilization. Proceedings of the National Academy of Sciences of the United States of America, 87, 9285–9289.

    Article  CAS  Google Scholar 

  • Runft, L. L., Jaffe, L. A., & Mehlmann, L. M. (2002). Egg activation at fertilization: Where it all begins. Developmental Biology, 245, 237–254. https://doi.org/10.1006/dbio.2002.0600

    Article  CAS  PubMed  Google Scholar 

  • Saito, T., Shiba, K., Inaba, K., Yamada, L., & Sawada, H. (2012). Self-incompatibility response induced by calcium increase in sperm of the ascidian Ciona intestinalis. Proceedings of the National Academy of Sciences of the United States of America, 109, 4158–4162.

    Article  CAS  Google Scholar 

  • Sato, K., Fukami, Y., & Stith, B. J. (2006). Signal transduction pathways leading to Ca2+ release in a vertebrate model system: Lessons from Xenopus eggs. Seminars in Cell & Developmental Biology, 17, 285–292. https://doi.org/10.1016/j.semcdb.2006.02.008

    Article  CAS  Google Scholar 

  • Saunders, C. M., et al. (2002). PLC zeta: A sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development, 129, 3533–3544.

    Google Scholar 

  • Shiba, K., Baba, S. A., Inoue, T., & Yoshida, M. (2008). Ca2+ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response. Proceedings of the National Academy of Sciences of the United States of America, 105, 19312–19317. https://doi.org/10.1073/pnas.0808580105

    Article  PubMed  PubMed Central  Google Scholar 

  • Stricker, S. A. (1999). Comparative biology of calcium signaling during fertilization and egg activation in animals. Developmental Biology, 211, 157–176. https://doi.org/10.1006/dbio.1999.9340

    Article  CAS  PubMed  Google Scholar 

  • Swann, K. (1990). A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development, 110, 1295–1302.

    CAS  PubMed  Google Scholar 

  • Tsien, R. Y. (1980). New calcium indicators and buffers with high selectivity against magnesium and protons: Design, synthesis, and properties of prototype structures. Biochemistry, 19, 2396–2404.

    Article  CAS  Google Scholar 

  • Wessel, G. M., & Vacquier, V. D. (2004). Isolation of organelles and components from sea urchin eggs and embryos. In C. A. Ettensohn, G. A. Wray, & G. M. Wessel (Eds.), Methods in cell biology (Vol. 74, pp. 491–522). Amsterdam: Elsevier.

    Google Scholar 

  • Yoshida, M., Sensui, N., Inoue, T., Morisawa, M., & Mikoshiba, K. (1998). Role of two series of Ca2+ oscillations in activation of ascidian eggs. Developmental Biology, 203, 122–133. https://doi.org/10.1006/dbio.1998.9037

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Inaba .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Sperm chemotaxis to the tip of capillary filled with sperm attractant in the ascidian C. intestinalis (play at 1.8× speed) (MOV 8556 kb).

Formation of fertilization membrane in the sea urchin Hemicentrotus pulcherrimus (play at 3× speed) (MOV 6482 kb).

Ca2+ oscillation patterns of a fertilized egg of C. intestinalis. Probed with Calcium Green-1. Note that fertilization accompanies the first large Ca2+ increase that cause egg deformation, followed by several spikes of Ca2+ increases (MOV 6535 kb).

Ca2+ oscillation patterns of a fertilized egg of C. intestinalis. Probed with Fura-2 (MOV 3565 kb).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inaba, K., Sawada, H., Yoshida, M., Shiba, K., Shirae-Kurabayashi, M. (2020). Gametes and Fertilization. In: Inaba, K., Hall-Spencer, J. (eds) Japanese Marine Life. Springer, Singapore. https://doi.org/10.1007/978-981-15-1326-8_9

Download citation

Publish with us

Policies and ethics