Skip to main content

Development of Marine Invertebrates

  • Chapter
  • First Online:
Japanese Marine Life

Abstract

Marine invertebrates are used in developmental, cell, and evolutionary biology, and some critical biological phenomena have been found using these organisms. For example, one of the most important cell-cycle regulator proteins, cyclin, was found in a sea urchin (Evans et al., Cell 33:389–396, 1983); the cell-fate determinant, macho-1, was first identified in ascidians (Nishida and Sawada, Nature 409:724–729, 2001); and it was clearly demonstrated, using spiralians, that the acquisition of a novel gene set could produce new developmental processes (Morino et al., Nature Ecology & Evolution 1:1942–1949, 2017). Due to the easy accessibility of their habitats and easily obtained gametes, marine invertebrates have been used for science and education in marine biological stations worldwide. In this chapter, we summarize methods for the use of marine invertebrates to study developmental biology with a focus on sea urchins, ascidians, and gastropods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brandhorst, B. P., & Davenport, R. (2001). Skeletogenesis in sea urchin interordinal hybrid embryos. Cell and Tissue Research, 305, 159–167.

    Article  CAS  Google Scholar 

  • Conklin, E. G. (1905). Organ forming substances in the eggs of ascidians. Biological Bulletin, 8, 205–230.

    Article  Google Scholar 

  • Corbo, J. C., Erives, A., Di Gregorio, A., Chang, A., & Levine, M. (1997). Dorsoventral patterning of the vertebrate neural tube is conserved in a protochordate. Development, 124, 2335–2344.

    CAS  PubMed  Google Scholar 

  • Deguchi, R. (2007). Fertilization causes a single Ca2+ increase that fully depends on Ca2+ influx in oocytes of limpets (phylum Mollusca, class Gastropoda). Developmental Biology, 304, 652–663.

    Article  CAS  Google Scholar 

  • Dehal, P., et al. (2002). The draft genome of Ciona intestinalis: Insight into chordate and vertebrate origins. Science, 298(5601), 2157–2167.

    Article  CAS  Google Scholar 

  • Delsuc, F., Brinkmann, H., Chourrout, D., & Philippe, H. (2006). Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 439(7079), 965–968.

    Article  CAS  Google Scholar 

  • Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D., & Hunt, T. (1983). Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell, 33, 389–396.

    Article  CAS  Google Scholar 

  • Hikosaka, A., Kusakabe, T., Satoh, N., & Makabe, K. W. (1992). Introduction and expression of recombinant genes in ascidian embryos. Development, Growth & Differentiation, 34, 627–634.

    Article  CAS  Google Scholar 

  • Lambert, J. D. (2010). Developmental patterns in spiralian embryos. Current Biology, 20, R72–R77.

    Article  CAS  Google Scholar 

  • Laumer, C. E., Bekkouche, N., Kerbl, A., Goetz, F., Neves, R. C., Sørensen, M. V., et al. (2015). Spiralian phylogeny informs the evolution of microscopic lineages. Current Biology, 25, 2000–2006.

    Article  CAS  Google Scholar 

  • MacBride. (1912). Hybrid Sea-urchins. Nature, 89, 450.

    Article  Google Scholar 

  • Maruyama, Y. K., Nakaseko, Y., & Yagi, S. (1985). Localization of cytoplasmic determinants responsible for primary mesenchyme formation and gastrulation in the unfertilized egg of the sea urchin Hemicentrotus pulcherrimus. Journal of Experimental Zoology, 236, 155–163.

    Article  Google Scholar 

  • Morino, Y., Hashimoto, N., & Wada, H. (2017). Expansion of TALE homeobox genes and the evolution of spiralian development. Nature Ecology & Evolution, 1, 1942–1949.

    Article  Google Scholar 

  • Nishida, H. (2005). Specification of embryonic axis and mosaic development in ascidians. Developmental Dynamics, 233, 1177–1193.

    Article  CAS  Google Scholar 

  • Nishida, H., & Sawada, K. (2001). Macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature, 409, 724–729.

    Article  CAS  Google Scholar 

  • Sardet, C., Speksnijder, J. E., Inoue, S., & Jaffe, L. (1989). Fertilization and ooplasmic movements in the ascidian egg. Development, 105, 237–249.

    CAS  PubMed  Google Scholar 

  • Sasakura, Y. (2018). Advances in experimental medicine and biology. In Transgenic ascidians (p. 1029). Singapore: Springer.

    Chapter  Google Scholar 

  • Sasakura, Y., Inaba, K., Satoh, N., Kondo, M., & Akasaka, K. (2009). Ciona intestinalis and Oxycomanthus japonicus, representatives of marine invertebrates. Experimental Animals, 58, 459–469.

    Article  CAS  Google Scholar 

  • Schroeder, T. E. (1980). The jelly canal marker of polarity of sea urchin oocytes, eggs, and embryos. Experimental Cell Research, 128, 490–494.

    Article  CAS  Google Scholar 

  • SeGall, G. K., & Lennarz, W. J. (1979). Chemical characterization of the component of the jelly coat from sea urchin eggs responsible for induction of the acrosome reaction. Developmental Biology, 71, 33–48.

    Article  CAS  Google Scholar 

  • Wikramanayake, A. H., Brandhorst, B. P., & Klein, W. H. (1995). Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species. Development, 121, 1497–1505.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank M. Kiyomoto, T. Sato, D. Shibata, M. Ooue, T. Kodaka, J. Takano, and M. Yamaguchi for collecting and keeping the adult sea urchins. We thank Y. Satou, M. Yoshida, R. Yoshida, C. Imaizumi, and S. Aratake for providing wild-type Ciona through the National BioResource Project, Japan. We further thank K. Mita for providing photographs of Ciona embryos. We thank H. Wada and N. Hashimoto for helping with the collection of limpets and constructing the protocol for the artificial fertilization of limpets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Yaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yaguchi, S., Morino, Y., Sasakura, Y. (2020). Development of Marine Invertebrates. In: Inaba, K., Hall-Spencer, J. (eds) Japanese Marine Life. Springer, Singapore. https://doi.org/10.1007/978-981-15-1326-8_10

Download citation

Publish with us

Policies and ethics