Skip to main content

Application of Plant Volatile Organic Compounds (VOCs) in Agriculture

  • Chapter
  • First Online:
New Frontiers in Stress Management for Durable Agriculture

Abstract

Plant volatiles facilitates communication between plants and organisms of other trophic levels, i.e., herbivores and their natural enemies. There is also mounting evidence that plant VOCs provide direct defense against various abiotic and biotic stresses. The ability of plant volatile compounds to act as reliable attraction and deterrence cue for herbivores and pathogens and attraction cue for beneficial insects presents new prospects for its commercial use as baits in sustainable agriculture. Considerable progress has been made in utilizing the VOC-mediated signaling in pest control, plant defense priming, and growth stimulation. At present, the use of genetically modified (GM) crops with altered VOC emission and synthetic plant VOCs in field setting has shown promising results. In this chapter, we review the different areas in which the possible benefits of plant VOCs can be utilized. We also discuss the potential use of GM crops and commercial VOC formulations in agriculture for their defensive role against abiotic and biotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abanda-Nkpwatt D, Krimm U, Coiner HA, Schreiber L, Schwab W (2006) Plant volatiles can minimize the growth suppression of epiphytic bacteria by the phytopathogenic fungus Botrytis cinerea in co-culture experiments. Environ Exp Bot 56(1):108–119

    Article  CAS  Google Scholar 

  • Ali JG, Alborn HT, Stelinski LL (2011) Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J Ecol 99(1):26–35

    Article  CAS  Google Scholar 

  • Aljbory Z, Chen M-S (2018) Indirect plant defense against insect herbivores: a review. Insect Sci 25(1):2–23

    Article  CAS  PubMed  Google Scholar 

  • Allmann S, Baldwin IT (2010) Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science 329(5995):1075–1078

    Article  CAS  PubMed  Google Scholar 

  • Allmann S, Späthe A, Bisch-Knaden S, Kallenbach M, Reinecke A, Sachse S, Baldwin IT, Hansson BS (2013) Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition. elife 2:e00421

    Article  PubMed  PubMed Central  Google Scholar 

  • Arimura G-I, Ozawa R, Horiuchi J-I, Nishioka T, Takabayashi J (2001) Plant–plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Syst Ecol 29(10):1049–1061

    Article  CAS  Google Scholar 

  • Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221(4607):277–279

    Article  CAS  PubMed  Google Scholar 

  • Barney JN, Hay AG, Weston LA (2005) Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J Chem Ecol 31(2):247–265

    Article  CAS  PubMed  Google Scholar 

  • Bate NJ, Rothstein SJ (1998) C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16(5):561–569

    Article  CAS  PubMed  Google Scholar 

  • Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA et al (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc Natl Acad Sci U S A 103(27):10509–10513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87(2):133–142

    Article  CAS  Google Scholar 

  • Bhowmik PC (2003) Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot 22(4):661–671

    Google Scholar 

  • Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schütz S, de Both MTJ, Haring MA, Schuurink RC (2009) The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol 151(2):925–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradow JM (1991) Relationships between chemical structure and inhibitory activity of C6 through C9 volatiles emitted by plant residues. J Chem Ecol 17(11):2193–2212

    Article  CAS  PubMed  Google Scholar 

  • Bradow JM, Connick WJ (1990) Volatile seed germination inhibitors from plant residues. J Chem Ecol 16(3):645–666

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJ, Martin JL, Pickett JA, Pye BJ, Smart LE, Wadhams LJ (2003) cis-Jasmone treatment induces resistance in wheat plants against the grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae). Pest Manag Sci 59(9):1031–1036

    Article  CAS  PubMed  Google Scholar 

  • Bukovinszky T, Gols R, Posthumus MA, Vet LEM, Van Lenteren JC (2005) Variation in plant volatiles and attraction of the parasitoid Diadegma semiclausum (Hellén). J Chem Ecol 31(3):461–480

    Article  CAS  PubMed  Google Scholar 

  • Caparrotta S, Boni S, Taiti C, Palm E, Mancuso S, Pandolfi C (2018) Induction of priming by salt stress in neighboring plants. Environ Exp Bot 147:261–270

    Article  CAS  Google Scholar 

  • Castelyn HD, Appelgryn JJ, Mafa MS, Pretorius ZA, Visser B (2015) Volatiles emitted by leaf rust infected wheat induce a defence response in exposed uninfected wheat seedlings. Australas Plant Pathol 44(2):245–254

    Article  CAS  Google Scholar 

  • Chehab EW, Kaspi R, Savchenko T, Rowe H, Negre-Zakharov F, Kliebenstein D, Dehesh K (2008) Distinct roles of jasmonates and aldehydes in plant-defense responses. PLoS one 3(4):e1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cofer TM, Engelberth M, Engelberth J (2018) Green leaf volatiles protect maize (Zea mays) seedlings against damage from cold stress. Plant Cell Environ 41(7):1673–1682

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Newman M-A, Pieterse CM, Poinssot B, Pozo MJ (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19(10):1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Copolovici L, Kännaste A, Pazouki L, Niinemets Ü (2012) Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J Plant Physiol 169(7):664–672

    Article  CAS  PubMed  Google Scholar 

  • Copolovici LO, Filella I, Llusià J, Niinemets Ü, Peñuelas J (2005) The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiol 139(1):485–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft KP, Juttner F, Slusarenko AJ (1993) Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol 101(1):13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577

    Article  CAS  PubMed  Google Scholar 

  • Degenhardt J, Hiltpold I, Kollner TG, Frey M, Gierl A, Gershenzon J, Hibbard BE, Ellersieck MR, Turlings TCJ (2009) Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc Natl Acad Sci U S A 106(41):17606

    CAS  Google Scholar 

  • Delphia CM, Mescher MC, De Moraes CM (2007) Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. J Chem Ecol 33(5):997–1012

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Foyer CH (2018) Climate resilient crops for improving global food security and safety. Plant Cell Environ 41(5):877–884

    Article  PubMed  Google Scholar 

  • Dicke M (1988) Prey preference of the phytoseiid mite Typhlodromus pyri response to volatile kairomones. Exp Appl Acarol 4(1):1–13

    Article  CAS  Google Scholar 

  • Dicke M, Dijkman H (1992) Induced defence in detached uninfested plant leaves: effects on behaviour of herbivores and their predators. Oecologia 91(4):554–560

    Article  PubMed  Google Scholar 

  • Dicke M, Sabelis MW (1988) How plants obtain predatory mites as bodyguards. Netherlands J Zool 38(2–4):148–165

    Google Scholar 

  • Ebel RC, Mattheis JP, Buchanan DA (1995) Drought stress of apple trees alters leaf emissions of volatile compounds. Physiol Plant 93(4):709–712

    Article  CAS  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci U S A 101(6):1781–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelberth J, Engelberth M (2019) The costs of green leaf volatile-induced defense priming: temporal diversity in growth responses to mechanical wounding and insect herbivory. Plants 8(1):23

    Article  CAS  PubMed Central  Google Scholar 

  • Engelberth J, Seidl-Adams I, Schultz JC, Tumlinson JH (2007) Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in zea mays. Mol Plant Microbe Interact 20(6):707–716

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Veyrat N, Robert CA, Xu H, Frey M, Ton J, Turlings TC (2015) Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun 6(6273):6273

    Article  CAS  PubMed  Google Scholar 

  • Farmer EE (2014) Leaf defence. OUP, Oxford

    Book  Google Scholar 

  • Fischer NH, Williamson GB, Weidenhamer JD, Richardson DR (1994) In search of allelopathy in the Florida scrub: the role of terpenoids. J Chem Ecol 20(6):1355–1380

    Article  CAS  PubMed  Google Scholar 

  • Freundlich GE, Frost C (2018) Variable costs of eavesdropping a green leaf volatile on two plant species in a common garden experiment. bioRxiv

    Google Scholar 

  • Frost CJ, Appel HM, Carlson JE, De Moraes CM, Mescher MC, Schultz JC (2007) Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecol Lett 10(6):490–498

    Article  PubMed  Google Scholar 

  • Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008a) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146(3):818–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frost CJ, Mescher MC, Dervinis C, Davis JM, Carlson JE, De Moraes CM (2008b) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol 180(3):722–734

    Article  CAS  PubMed  Google Scholar 

  • Gasmi L, Martínez-Solís M, Frattini A, Ye M, Collado MC, Turlings TCJ, Erb M, Herrero S (2019) Can herbivore-induced volatiles protect plants by increasing the herbivores’ susceptibility to natural pathogens? J Appl Environ Microbiol 85(1):e01468-18

    Article  Google Scholar 

  • Gfeller A, Laloux M, Barsics F, Kati DE, Haubruge E, du Jardin P, Verheggen FJ, Lognay G, Wathelet J-P, Fauconnier M-L (2013) Characterization of volatile organic compounds emitted by barley (Hordeum vulgare L.) roots and their attractiveness to wireworms. J Chem Ecol 39(8):1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Gibson RW, Pickett JA (1983) Wild potato repels aphids by release of aphid alarm pheromone. Nature 302:608

    Article  CAS  Google Scholar 

  • Gols R, Bullock JM, Dicke M, Bukovinszky T, Harvey JA (2011) Smelling the wood from the trees: non-linear parasitoid responses to volatile attractants produced by wild and cultivated cabbage. J Chem Ecol 37(8):795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay W (1995) A global model of natural volatile organic compound emissions. J Geophys Res Atmos 100(D5):8873–8892

    Article  CAS  Google Scholar 

  • Haas UJ, Grimm C, James JR 2013. Patent no. WO 2013/037758 A1-crop enhancement with cis-jasmone. https://patents.google.com/patent/WO2013037758A1/und.In Organization WIP

  • Halitschke R, Stenberg JA, Kessler D, Kessler A, Baldwin IT (2008) Shared signals—‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol Lett 11(1):24–34

    PubMed  Google Scholar 

  • Hamilton-Kemp T, McCracken C, Loughrin J, Andersen R, Hildebrand D (1992) Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea. J Chem Ecol 18(7):1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Hatano E, Saveer AM, Borrero-Echeverry F, Strauch M, Zakir A, Bengtsson M, Ignell R, Anderson P, Becher PG, Witzgall P (2015) A herbivore-induced plant volatile interferes with host plant and mate location in moths through suppression of olfactory signalling pathways. BMC Biol 13(1):75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heil M (2004) Direct defense or ecological costs: responses of herbivorous beetles to volatiles released by wild lima bean (Phaseolus lunatus). J Chem Ecol 30(6):1289–1295

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Bueno JCS (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci U S A 104(13):5467–5472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himejima M, Hobson KR, Otsuka T, Wood DL, Kubo I (1992) Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: a defense mechanism against microbial invasion. J Chem Ecol 18(10):1809–1818

    Article  CAS  PubMed  Google Scholar 

  • Holopainen JK (2004) Multiple functions of inducible plant volatiles. Trends Plant Sci 9(11):529–533

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Cardoza YJ, Schmelz EA, Raina R, Engelberth J, Tumlinson JH (2003) Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Planta 217(5):767–775

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, Tholl D (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193(4):997–1008

    Article  CAS  PubMed  Google Scholar 

  • James DG (2003) Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. J Chem Ecol 29(7):1601–1609

    Article  CAS  PubMed  Google Scholar 

  • James DG (2005) Further field evaluation of synthetic herbivore-induced plan volatiles as attractants for beneficial insects. J Chem Ecol 31(3):481–495

    Article  CAS  PubMed  Google Scholar 

  • James DG, Grasswitz TR (2005) Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps. BioControl 50(6):871–880

    Article  CAS  Google Scholar 

  • James DG, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30(8):1613–1628

    Article  CAS  PubMed  Google Scholar 

  • Jassbi AR, Zamanizadehnajari S, Baldwin IT (2010) Phytotoxic volatiles in the roots and shoots of Artemisia tridentata as detected by headspace solid-phase microextraction and gas chromatographic-mass spectrometry analysis. J Chem Ecol 36(12):1398–1407

    Article  CAS  PubMed  Google Scholar 

  • Kaplan I (2012) Attracting carnivorous arthropods with plant volatiles: the future of biocontrol or playing with fire? Biol Control 60(2):77–89

    Article  Google Scholar 

  • Karban R, Maron J (2002) The fitness consequences of interspecific eavesdropping between plants. Ecology 83(5):1209–1213

    Article  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2006) Components of C6-aldehyde-induced resistance in Arabidopsis thaliana against a necrotrophic fungal pathogen, Botrytis cinerea. Plant Sci 170(4):715–723

    Article  CAS  Google Scholar 

  • Kong C, Hu F, Xu X (2002) Allelopathic potential and chemical constituents of volatiles from Ageratum conyzoides under stress. J Chem Ecol 28(6):1173–1182

    Article  CAS  PubMed  Google Scholar 

  • lee K, Seo PJ (2014) Airborne signals from salt-stressed Arabidopsis plants trigger salinity tolerance in neighboring plants. Plant Signal Behav 9(3):e28392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreto F, Delfine S (2000) Emission of isoprene from salt-stressed Eucalyptus globulus leaves. Plant Physiol 123(4):1605–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreto F, Förster A, Dürr M, Csiky O, Seufert G (1998) On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant Cell Environ 21(1):101–107

    Article  CAS  Google Scholar 

  • Loreto F, Mannozzi M, Maris C, Nascetti P, Ferranti F, Pasqualini S (2001) Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiol 126(3):993–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24(4):361–367

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127(4):1781–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Major RT, Marchini P, Sproston T (1960) Isolation from Ginkgo biloba L. of an inhibitor of fungus growth. J Biol Chem 235(11):3298–3299

    CAS  PubMed  Google Scholar 

  • Mäntylä E, Alessio GA, Blande JD, Heijari J, Holopainen JK, Laaksonen T, Piirtola P, Klemola T (2008) From plants to birds: higher avian predation rates in trees responding to insect herbivory. PLoS One 3(7):e2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martino LD, Mancini E, LFRd A, Feo VD (2010) The antigerminative activity of twenty-seven monoterpenes. Molecules 15(9):6630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui K, Kishimoto K, Takabayashi J, Ozawa R (2005) Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol 46(7):1093–1102

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Minami A, Hornung E, Shibata H, Kishimoto K, Ahnert V, Kindl H, Kajiwara T, Feussner I (2006) Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber. Phytochemistry 67(7):649–657

    Article  CAS  PubMed  Google Scholar 

  • Maurya AK, Pazouki L, Frost C (2019) Plant seeds are primed by herbivore-induced plant volatiles. bioRxiv: 522839

    Google Scholar 

  • Monson RK, Fall R (1989) Isoprene emission from aspen leaves: influence of environment and relation to photosynthesis and photorespiration. Plant Physiol 90(1):267–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monson RK, Jaeger CH, Adams WW, Driggers EM, Silver GM, Fall R (1992) Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. Plant Physiol 98(3):1175–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller WH, Muller CH (1964) Volatile growth inhibitors produced by salvia species. Bull Torrey Bot Club 91(4):327–330

    Article  CAS  Google Scholar 

  • Mumm R, Dicke M (2010) Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can J Zool 88(7):628–667

    Article  CAS  Google Scholar 

  • Nakamura S, Hatanaka A (2002) Green-leaf-derived C6-aroma compounds with potent antibacterial action that act on both gram-negative and gram-positive bacteria. J Agric Food Chem 50(26):7639–7644

    Article  CAS  PubMed  Google Scholar 

  • Ninkovic V (2003) Volatile communication between barley plants affects biomass allocation. J Exp Bot 54(389):1931–1939

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537–537

    PubMed  PubMed Central  Google Scholar 

  • Pardo-Muras M, Puig CG, López-Nogueira A, Cavaleiro C, Pedrol N (2018) On the bioherbicide potential of Ulex europaeus and Cytisus scoparius: profiles of volatile organic compounds and their phytotoxic effects. PLoS One 13(10):e0205997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto-Zevallos DM, Strapasson P, Zarbin PH (2016) Herbivore-induced volatile organic compounds emitted by maize: electrophysiological responses in Spodoptera frugiperda females. Phytochem Lett 16:70–74

    Article  CAS  Google Scholar 

  • Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Carbonne F, Griffiths G, Esquerré-Tugayé M-T, Rosahl S et al (2005) Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol 139(4):1902–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana-Rodriguez E, Morales-Vargas AT, Molina-Torres J, Ádame-Alvarez RM, Acosta-Gallegos JA, Heil M (2015) Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J Ecol 103(1):250–260

    Article  CAS  Google Scholar 

  • Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569

    Article  Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737

    Article  CAS  PubMed  Google Scholar 

  • Rhoades DF (1983) Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. ACS Publications, Washington, DC

    Google Scholar 

  • Rodriguez-Saona CR, Rodriguez-Saona LE, Frost CJ (2009) Herbivore-induced volatiles in the perennial shrub, Vaccinium corymbosum, and their role in inter-branch signaling. J Chem Ecol 35(2):163–175

    Article  PubMed  Google Scholar 

  • Ryan AC, Hewitt CN, Possell M, Vickers CE, Purnell A, Mullineaux PM, Davies WJ, Dodd IC (2014) Isoprene emission protects photosynthesis but reduces plant productivity during drought in transgenic tobacco (Nicotiana tabacum) plants. New Phytol 201(1):205–216

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Ohara K, Yazaki K, Saito T, Oksman-Caldentey K-M, Lämsä M, Ohyama K, Suzuki M, Muranaka T (2007) Plants utilize isoprene emission as a thermotolerance mechanism. Plant Cell Physiol 48(9):1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Scala A, Mirabella R, Mugo C, Matsui K, Haring MA, Schuurink RC (2013) E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis. Front Plant Sci 4:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Schenkel D, Lemfack M, Piechulla B, Splivallo R (2015) A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. Front Plant Sci 6:707

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuman MC, Barthel K, Baldwin IT (2012) Herbivory-induced volatiles function as defenses increasing fitness of the native plant Nicotiana attenuata in nature. elife 1:e00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharifi R, Lee S-M, Ryu C-M (2018) Microbe-induced plant volatiles. New Phytol 220(3):684–691

    Article  PubMed  Google Scholar 

  • Sharkey TD, Chen X, Yeh S (2001) Isoprene increases thermotolerance of fosmidomycin-fed leaves. Plant Physiol 125(4):2001–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95(3):328–333

    Article  PubMed  Google Scholar 

  • Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374(6525):769–769

    Article  CAS  Google Scholar 

  • Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J (2006) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Nat Acad Sci U S A 103(45):16672–16676

    Article  CAS  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385(6618):718–721

    Article  CAS  Google Scholar 

  • Siwko ME, Marrink SJ, de Vries AH, Kozubek A, Uiterkamp AJS, Mark AE (2007) Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. Biochim Biophys Acta 1768(2):198–206

    Article  CAS  PubMed  Google Scholar 

  • Song G, Ryu C-M (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14(5):9803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesio F, Ferrero A (2010) Allelopathy, a chance for sustainable weed management. Int J Sustain Dev World Ecol 17(5):377–389

    Google Scholar 

  • Teuber M, Zimmer I, Kreuzwieser J, Ache P, Polle A, Rennenberg H, Schnitzler JP (2008) VOC emissions of Grey poplar leaves as affected by salt stress and different N sources. Plant Biol 10(1):86–96

    Article  CAS  PubMed  Google Scholar 

  • Thaler JS (1999) Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399(6737):686–688

    Article  CAS  Google Scholar 

  • Thelen GC, Vivanco JM, Newingham B, Good W, Bais HP, Landres P, Caesar A, Callaway RM (2005) Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecol Lett 8(2):209–217

    Article  Google Scholar 

  • Tingey DT, Manning M, Grothaus LC, Burns WF (1980) Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol 65(5):797–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong X, Qi J, Zhu X, Mao B, Zeng L, Wang B, Li Q, Zhou G, Xu X, Lou Y (2012) The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. Plant J 71(5):763–775

    Article  CAS  PubMed  Google Scholar 

  • Turlings TC, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-injured corn. Proc Natl Acad Sci 89(17):8399–8402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turlings TC, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250(4985):1251–1253

    Article  CAS  PubMed  Google Scholar 

  • Vallat A, Gu H, Dorn S (2005) How rainfall, relative humidity and temperature influence volatile emissions from apple trees in situ. Phytochemistry 66(13):1540–1550

    Article  CAS  PubMed  Google Scholar 

  • Van Tol RW, Van Der Sommen AT, Boff MI, Van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4(4):292–294

    Article  Google Scholar 

  • Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castañera P, Sánchez-Serrano JJ (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc Natl Acad Sci 98(14):8139–8144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veyrat N, Robert CAM, Turlings TCJ, Erb M (2016) Herbivore intoxication as a potential primary function of an inducible volatile plant signal. J Ecol 104(2):591–600

    Article  CAS  Google Scholar 

  • Vokou D, Douvli P, Blionis GJ, Halley JM (2003) Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growth. J Chem Ecol 29(10):2281–2301

    Article  CAS  PubMed  Google Scholar 

  • Vuorinen T, Nerg A-M, Holopainen JK (2004) Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling. Environ Pollut 131(2):305–311

    Article  CAS  PubMed  Google Scholar 

  • Wheatley R (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81(1–4):357–364

    Article  CAS  PubMed  Google Scholar 

  • Yan Z-G, Wang C-Z (2006) Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. Phytochemistry 67(1):34–42

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Zhang Y, Wu K, Gao XW, Guo YY (2008) Field-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. Environ Entomol 37(6):1410–1415

    Article  CAS  PubMed  Google Scholar 

  • Zeringue HJ, McCormick SP (1989) Relationships between cotton leaf-derived volatiles and growth ofAspergillus flavus. J Am Oil Chem Soc 66(4):581–585

    Article  CAS  Google Scholar 

  • Zhang Y, Xie Y, Xue J, Peng G, Wang X (2009) Effect of volatile emissions, especially alpha-pinene, from persimmon trees infested by Japanese wax scales or treated with methyl jasmonate on recruitment of ladybeetle predators. Environ Entomol 38(5):1439–1445

    Article  CAS  PubMed  Google Scholar 

  • Zhuge PP, Luo SL, Wang MQ, Zhang G (2010) Electrophysiological responses of Batocera horsfieldi (Hope) adults to plant volatiles. J Appl Entomol 134(7):600–607

    CAS  Google Scholar 

  • Gomi K, Yamasaki Y, Yamamoto H, Akimitsu K (2003) Characterization of a hydroperoxide lyase gene and effect of C6-volatiles on expression of genes of the oxylipin metabolism in citrus. J Plant Physiol 160(10):1219–1231

    Article  CAS  PubMed  Google Scholar 

  • He P-Q, Tian L, Chen K-S, Hao L-H, Li G-Y (2006) Induction of volatile organic compounds of Lycopersicon esculentum mill. and its resistance to Botrytis cinerea pers. by burdock oligosaccharide. J Integr Plant Biol 48(5):550–557

    Article  CAS  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2008) Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in Arabidopsis against Botrytis cinerea. Phytochemistry 69(11):2127–2132

    Article  CAS  PubMed  Google Scholar 

  • Kubo I, Fujita K (2001) Naturally occurring anti-salmonella agents. J Agric Food Chem 49(12):5750–5754

    Article  CAS  PubMed  Google Scholar 

  • Laothawornkitkul J, Paul ND, Vickers CE, Possell M, Taylor JE, Mullineaux PM, Hewitt CN (2008) Isoprene emissions influence herbivore feeding decisions. Plant Cell Environ 31(10):1410–1415

    Article  CAS  PubMed  Google Scholar 

  • Myung K, Hamilton-Kemp TR, Archbold DD (2007) Interaction with and effects on the profile of proteins of Botrytis cinerea by C6 aldehydes. J Agric Food Chem 55(6):2182–2188

    Article  CAS  PubMed  Google Scholar 

  • Pettersson J, Pickett J, Pye B, Quiroz A, Smart L, Wadhams L, Woodcock C (1994) Winter host component reduces colonization by bird-cherry-oat aphid, Rhopalosiphum padi (L.)(Homoptera, Aphididae), and other aphids in cereal fields. J Chem Ecol 20(10):2565–2574

    Article  CAS  PubMed  Google Scholar 

  • Yi H-S, Heil M, Adame-Álvarez RM, Ballhorn DJ, Ryu C-M (2009) Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol 151(4):2152–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinav K. Maurya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurya, A.K. (2020). Application of Plant Volatile Organic Compounds (VOCs) in Agriculture. In: Rakshit, A., Singh, H., Singh, A., Singh, U., Fraceto, L. (eds) New Frontiers in Stress Management for Durable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-1322-0_21

Download citation

Publish with us

Policies and ethics