Skip to main content

Design and Development of Some SU-8 Wire Waveguide Structures

  • Chapter
  • First Online:
Photonic Waveguide Components on Silicon Substrate

Abstract

This chapter deals with the design and development of wire waveguide structures, viz. directional coupler and micro-ring resonator using SU-8 polymer. For optical integrated circuits based on micro-ring resonators (MRRs), one needs to know the coupling coefficients between straight and curved waveguides, and two curved waveguides accurately to compute the resonance characteristics of a single micro-ring and two coupled micro-rings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Samanta, P.K. Dey, P. Banerji, P. Ganguly, Fabrication of directional coupler using SU-8 wire waveguide by optical lithography, in International Conference on Fiber Optics and Photonics (IIT Kanpur, India, 2016), p. W3A.87

    Google Scholar 

  2. S. Samanta, P. Banerji, P. Ganguly, Micro-ring resonator using SU-8 waveguides for temperature sensor, in International Conference on Fiber Optics and Photonics (IIT Kanpur, India, 2016), p. W2F.4

    Google Scholar 

  3. S. Samanta, P.K. Dey, P. Banerji, P. Ganguly, Development of micro-ring resonator-based optical bandpass filter using SU-8 polymer and optical lithography. Opt. Mater. 77, 122–126 (2018)

    Article  Google Scholar 

  4. B.E. Little, S.T. Chu, H.A. Haus, J. Foresi, J.-P. Laine, Microring resonator channel dropping filters. J. Lightwave Technol. 15, 998–1005 (1997)

    Article  Google Scholar 

  5. A. Delage, D.-X. Xu, R.W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, J.H. Schmid, Wavelength-dependent model of a ring resonator sensor excited by a directional coupler. J. Lightwave Technol. 27, 1172–1180 (2009)

    Article  Google Scholar 

  6. J.P. George, N. Dasgupta, B.K. Das, Compact integrated optical directional coupler with large cross section silicon waveguides, in Silicon Photonics and Photonic Integrated Circuits II, Proceedings of SPIE Photonics Europe, vol 7719 (2010), p. 77191X

    Google Scholar 

  7. W.J. Chen, S.M. Eaton, H. Zhang, P.R. Herman, Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses. Opt. Exp. 16, 11470–11480 (2008)

    Article  Google Scholar 

  8. K. Kubota, J. Noda, O. Mikami, Traveling wave optical modulator using a directional coupler LiNb03 waveguide. IEEE J. Quant. Electron. QE-16, 754–760 (1980)

    Article  Google Scholar 

  9. R.J. McCosker, G.E. Town, WDM for fluorescence biosensing using a multi-channel directional coupler, in Optical Sensors (2010), p. SWB4

    Google Scholar 

  10. J. Wang, L.R. Chen, Low crosstalk Bragg grating/Mach-Zehnder interferometer optical add-drop multiplexer in silicon photonics. Opt. Express 23, 26450 (2015)

    Article  Google Scholar 

  11. A. Ghatak, K. Thyagarajan, M.R. Shenoy, Numerical analysis of planar optical waveguides using matrix approach. J. Lightwave Technol. 5, 660–667 (1987)

    Article  Google Scholar 

  12. H. Nishihara, M. Haruna, T. Suhara, Optical in Tegrated Circuits (McGraw-Hill, New York, 1987)

    Google Scholar 

  13. S. Samanta, P. Banerji, P. Ganguly, Effective index-based matrix method for silicon waveguides in SOI platform. Optik Int. J. Light Electron Opt. 126, 5488–5495 (2015)

    Article  Google Scholar 

  14. G. Lifante, Integrated Photonics: Fundamentals (Wiley, England, 2003)

    Book  Google Scholar 

  15. H. Kogelnik, Filter response of nonuniform almost-periodic structures. Bell Syst. Tech. J. 55, 109–126 (1976)

    Article  Google Scholar 

  16. R.C. Alferness, P.S. Cross, Filter characteristics of codirectionally coupled waveguides with weighted coupling. IEEE J. Quantum Electron. 14, 843–847 (1978)

    Article  Google Scholar 

  17. M. Nordstrom, D.A. Zauner, A. Boisen, J. Hubner, Single-mode waveguides With SU-8 polymer core and cladding for MOEMS applications. J. Lightwave Technol. 25, 1284–1289 (2007)

    Article  Google Scholar 

  18. S. Madden, Z. Jin, D. Choi, S. Debbarma, D. Bulla, B. Luther-Davies, Low loss coupling to sub-micron thick rib and nanowire waveguides by vertical tapering. Opt. Express 21, 3582–3594 (2013)

    Article  Google Scholar 

  19. K.K. Tung, W.H. Wong, E.Y.B. Pun, Polymeric optical waveguides using direct ultraviolet photolithography process. Appl. Phys. A Mater. Sci. Process. 80, 621–626 (2005)

    Article  Google Scholar 

  20. B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer. J. Lightwv. Technol. 27, 4091–4096 (2009)

    Article  Google Scholar 

  21. C.Y. Chao, W. Fung, L.J. Guo, Polymer microring resonators for biochemical sensing applications. J. Sel. Top. Quantum Electron. 12, 134–142 (2006)

    Article  Google Scholar 

  22. O.G. Lopez, D.V. Thourhout, D. Lasaosa, M. Lopez-Amo, R. Baets, M. Galarza, Vertically coupled microring resonators using one epitaxial growth step and single-side lithography. Opt. Exp. 23, 5317–5326 (2015)

    Article  Google Scholar 

  23. M. Balakrishnan, E.J. Klein, M.B.J. Diemeer, A. Driessen, Fabrication of an electro-optic polymer microring resonator, in Proceedings of Symposium IEEE/LEOS Benelux Chapter (2006), pp. 73–76

    Google Scholar 

  24. Y. Huang, G.T. Paloczi, A. Yariv, C. Zhang, L.R. Dalton, Fabrication and replication of polymer integrated optical devices using electron-beam lithography and soft lithography. J. Phys. Chem. B 108, 8606–8613 (2004)

    Article  Google Scholar 

  25. G.T. Paloczi, Y. Huang, A. Yariv, Free-standing all-polymer microring resonator optical filter. Electron. Lett. 39, 1650–1651 (2003)

    Article  Google Scholar 

  26. J.K.S. Poon, Y. Huang, G.T. Paloczi, A. Yariv, Soft lithography replica molding of critically coupled polymer microring resonators. IEEE Photon. Tech. Lett. 16, 2496–2498 (2004)

    Article  Google Scholar 

  27. P. Ganguly, Semi-analytical analysis of lithium niobate photonic wires. Opt. Commun. 285, 4347–4352 (2012)

    Article  Google Scholar 

  28. A. Yariv, Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron. 9, 919–933 (1973)

    Article  Google Scholar 

  29. H.A. Haus, W.P. Huang, S. Kawakami, N.A. Whitaker, Coupled-mode theory of optical waveguides. J. Lightwave Technol. LT-5, 16–23 (1987)

    Article  Google Scholar 

  30. M. Heiblum, Analysis of curved optical waveguides by conformal transformation. IEEE J. Quantum Electron. 11, 75–83 (1975)

    Article  Google Scholar 

  31. S. Xiao, M.H. Khan, H. Shen, M. Qi, Modeling and measurements of losses in silicon-on-insulator resonators and bends. Opt. Exp. 15, 10553–10561 (2007)

    Article  Google Scholar 

  32. J. Niehusmann, A. Vorckel, P.H. Bolivar, T. Wahlbrink, W. Henschel, H. Kurz, Ultrahigh-quality-factor silicon-on-insulator microring resonator. Opt. Lett. 29, 2861–2863 (2004)

    Article  Google Scholar 

  33. D. Dai, B. Yang, L. Yang, Z. Sheng, Design and fabrication of SU-8 polymer-based micro-racetrack resonators, in Proceedings of SPIE—The International Society for Optical Engineering, vol. 7134 (2008), p. 713414

    Google Scholar 

  34. C. Delezoide, M. Salsac, J. Lautru, H. Leh, C. Nogues, J. Zyss, M. Buckle, I.L. Rak, C.T. Nguyen, Vertically coupled polymer microracetrack resonators for label-free biochemical sensors. IEEE Photonics Technol. Lett. 24, 270–272 (2012)

    Article  Google Scholar 

  35. T. Cai, Q. Liu, Y. Shi, P. Chen, S. Heb, An efficiently tunable microring resonator using a liquid crystal-cladded polymer waveguide. Appl. Phys. Lett. 97, 121109 (2010)

    Article  Google Scholar 

  36. P. Ganguly, J.C. Biswas, S.K. Lahiri, Analysis of Ti:LiNbO3 zero-gap directional coupler for wavelength division multiplexer/demultiplexer. Opt. Commun. 281, 3269–3274 (2008)

    Article  Google Scholar 

  37. E. Armstrong, C.O. Wdyer, Artificial opal photonic crystals and inverse opal structures—fundamentals and applications from optics to energy storage. J. Mater. Chem. C 3, 6109–6143 (2015)

    Article  Google Scholar 

  38. W. Jiang, Study of photonic crystal based waveguide and channel drop filter and localization of light in photonic crystal. Master’s thesis, University of Texas, Austin, 2000

    Google Scholar 

  39. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals—Molding the Flow of Light, 2nd edn. (Princeton University Press, Princeton, 2008)

    MATH  Google Scholar 

  40. S. Combrie, G. Lehoucq, A. Junay, S. Malaguti, G. Bellanca, S. Trillo, L. Menager, J.P. Reithmaier, A.D. Rossi, All-optical signal processing at 10 GHz using a photonic crystal molecule. Appl. Phys. Lett. 103, 193510 (2013)

    Article  Google Scholar 

  41. T.F. Krauss, Slow light in photonic crystal waveguides. J. Phys. D Appl. Phys. 40, 2666–2670 (2007)

    Article  Google Scholar 

  42. B. Yang, Y. Zhu, Y. Jiao, L. Yang, Z. Sheng, S. He, D. Dai, Compact arrayed waveguide grating devices based on small SU-8 strip waveguides. J. Lightwave Technol. 29, 2009–2014 (2011)

    Article  Google Scholar 

  43. H. Benisty, P.H. Lalanne, S. Olivier, M. Rattier, C. Weisbuch, C.J.M. Smith, T.F. Krauss, C. Jouanin, D. Cassagne, Finite-depth and intrinsic losses in vertically etched two-dimensional photonic crystals. Opt. Quantum Electron. 34, 205–215 (2002)

    Article  Google Scholar 

  44. L. Cai, H. Han, S. Zhang, H. Hu, K. Wang, Photonic crystal slab fabricated on the platform of lithium niobate-on-insulator. Opt. Lett. 39, 2094–2096 (2014)

    Article  Google Scholar 

  45. G.W. Burr, S. Diziain, M.P. Bernal, The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals. Opt. Exp. 16, 6302–6316 (2008)

    Article  Google Scholar 

  46. P. Hamel, P. Grinberg, C. Sauvan, P. Lalanne, A. Baron, A.M. Yacomotti, I. Sagnes, F. Raineri, K. Bencheikh, J.A. Levenson, Coupling light into a slow-light photonic-crystal waveguide from a free-space normally-incident beam. Opt. Exp. 21, 15144–15154 (2013)

    Article  Google Scholar 

  47. J. Shi, M.E. Pollard, C.A. Angeles, R. Chen, J.C. Gates, M.B.D. Charlton, Photonic crystal and quasicrystals providing simultaneous light coupling and beam splitting within a low refractive-index slab waveguide. Sci. Rep. 7, 1812 (2017)

    Article  Google Scholar 

  48. S. Samanta, P. Banerji, P. Ganguly, Design and fabrication of SU-8 polymer based photonic crystal waveguide, in Frontiers in Optics, Washington, USA (2017), p. JW3A.70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagata Samanta .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samanta, S., Banerji, P., Ganguly, P. (2020). Design and Development of Some SU-8 Wire Waveguide Structures. In: Photonic Waveguide Components on Silicon Substrate . SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-15-1311-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1311-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1310-7

  • Online ISBN: 978-981-15-1311-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics