Skip to main content

Interaction of Nanomaterials with Biological Systems

  • Chapter
  • First Online:
Introduction to Bionanotechnology
  • 792 Accesses

Abstract

Nanomaterials have been used in biology and medicine. For instance, superparamagnetic iron oxide (Fe3O4) nanoparticles (NPs) have been applied as contrast agents in magnetic resonance imaging (MRI) technology [1, 2]. Materials in range of 50–200 nm could be uptaked into various cell types [3, 4]. Nanoscale materials have been attracted due to their advantages in flexible design, large-surface areas, and easy modification via different ligands [5]. As a result, nanomaterials showed their potential in drug delivery application. When materials at nanoscale as drug carriers, drugs could be efficiently protected from its degradation and metabolism after injection to human body [2]. Nanomaterials could also effectively carry drugs through cell membrane into intracellular environment via different pathways as presented. For cancer treatment purpose, nanoscale materials could be designed for uptaking in only disease targets while avoiding accumulation by healthy cells [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arsalani N, Fattahi H, Nazarpoor M. Synthesis and characterization of PVP-functionalized superparamagnetic Fe3O4 nanoparticles as an MRI contrast agent. Express Polym Lett. 2010;4:329–38.

    Article  Google Scholar 

  2. Mailander V, Landfester K. Interaction of nanoparticles with cells. Biomacromolecules. 2009;10:2379–400.

    Article  Google Scholar 

  3. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolar-medicated endocytosis. Biochem J. 2004;377:159–69.

    Article  Google Scholar 

  4. Lorenz MR, et al. Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials. 2006;27:2820–8.

    Article  Google Scholar 

  5. Zhang X-Q et al. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Adv Drug Deliver Rev. 2012; 64: 1363–84, doi:https://doi.org/10.1016/j.addr.2012.08.005.

    Article  Google Scholar 

  6. Hrkach J, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacoligical profile. Sci Transl Med. 2012; 4: 128ra139.

    Article  Google Scholar 

  7. Jain KK. Personalized medicine. Curr Opin Mol Ther. 2002;4:548–58.

    Google Scholar 

  8. Harper S, Usenko C, Hutchison JE, Maddux BLS, Tanguay RL. In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalisation and route of exposure. J Exp Nanosci. 2008;3:195–206. https://doi.org/10.1080/17458080802378953.

    Article  Google Scholar 

  9. Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol. 2013;11:26. https://doi.org/10.1186/1477-3155-11-26.

    Article  Google Scholar 

  10. Wolfram J, et al. The nano-plasma interface: implications of the protein corona. Colloids and Surfaces B: Biointerfaces 2014; 124: 17–24, doi:10.1016/j.colsurfb.2014.02.035.

    Article  Google Scholar 

  11. Cedervall T, et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Edit. 2007; 46: 5754–6, doi:https://doi.org/10.1002/anie.200700465.

    Article  Google Scholar 

  12. Landsiedel R, et al. Testing metal-oxide nanomaterials for human safety. Adv Mater. 2010; 22: 2601–27, doi:https://doi.org/10.1002/adma.200902658.

    Article  Google Scholar 

  13. Lundqvist M, Sethson I, Jonsson B-H. Protein adsorption onto silica nanoparticles: conformational changes depend on the Particles’ curvature and the protein stability. Langmuir. 2004;20:10639–47. https://doi.org/10.1021/la0484725.

    Article  Google Scholar 

  14. Lundqvist M, Sethson I, Jonsson B-H. Transient interaction with nanoparticles “freezes” a protein in an ensemble of metastable near-native conformations. Biochemistry. 2005;44:10093–9. https://doi.org/10.1021/bi0500067.

    Article  Google Scholar 

  15. Karajanagi SS, Vertegel AA, Kane RS, Dordick JS. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir. 2004;20:11594–9. https://doi.org/10.1021/la047994h.

    Article  Google Scholar 

  16. Nel AE, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009; 8: 543. doi:https://doi.org/10.1038/nmat2442.

    Article  ADS  Google Scholar 

  17. Wangoo N, Suri CR, Shekhawat G. Interaction of gold nanoparticles with protein: a spectroscopic study to monitor protein conformational changes. Appl Phys Lett. 2008;92:133104. https://doi.org/10.1063/1.2902302.

    Article  ADS  Google Scholar 

  18. Liu S, Sui Y, Guo K, Yin Z, Gao X. Spectroscopic study on the interaction of pristine C60 and serum albumins in solution. Nanoscale Res Lett. 2012;7:433. https://doi.org/10.1186/1556-276X-7-433.

    Article  ADS  Google Scholar 

  19. Vonarbourg A, Passirani C, Saulnier P, Benoit J-P. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27:4356–73. https://doi.org/10.1016/j.biomaterials.2006.03.039.

    Article  Google Scholar 

  20. Gref R, et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloid Surface B. 2000; 18: 301–13, doi:https://doi.org/10.1016/S0927-7765(99)00156-3.

    Article  Google Scholar 

  21. Peracchia MT, et al. Visualization of in vitro protein-rejecting properties of PEGylated stealth® polycyanoacrylate nanoparticles. Biomaterials. 1999; 20: 1269–75, doi:https://doi.org/10.1016/S0142-9612(99)00021-6.

    Article  Google Scholar 

  22. Bazile D, et al. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci. 1995; 84: 493–8, doi:https://doi.org/10.1002/jps.2600840420.

    Article  Google Scholar 

  23. Rensen PCN, et al. Selective liver targeting of antivirals by recombinant chylomicrons—a new therapeutic approach to hepatitis B. Nat Med. 1995; 1: 221. doi:https://doi.org/10.1038/nm0395-221.

    Article  Google Scholar 

  24. Michaelis K, et al. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther. 2006;317:1246–53.

    Article  Google Scholar 

  25. Kreuter J, et al. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Control Release 2007; 118:54–8. doi:10.1016/j.jconrel.2006.12.012.

    Article  Google Scholar 

  26. Desai N, Trieu V, Damascelli B, Soon-Shiong P. SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck Cancer patients. Transl Oncol. 2009;2:59–64. https://doi.org/10.1593/tlo.09109.

    Article  Google Scholar 

  27. Podhajcer OL, et al. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metast Rev. 2008; 27: 691. doi:https://doi.org/10.1007/s10555-008-9146-7.

    Article  Google Scholar 

  28. Peer D, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007; 2: 751, doi:10.1038/nnano.2007.387.

    Article  ADS  Google Scholar 

  29. Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev. 2002;54:561–87.

    Article  Google Scholar 

  30. Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm. 2009; 6: 659–68. doi:https://doi.org/10.1021/mp900015y.

    Article  Google Scholar 

  31. Davis ME, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010; 464: 1067. doi:https://doi.org/10.1038/nature08956.

    Article  ADS  Google Scholar 

  32. Farokhzad OC, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. P Natl Acad Sci USA. 2006;103:6315–20.

    Article  ADS  Google Scholar 

  33. Verma A, Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small. 2009;6:12–21. https://doi.org/10.1002/smll.200901158.

    Article  Google Scholar 

  34. Verma A, et al. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater. 2008; 7: 588, doi:https://doi.org/10.1038/nmat2202.

    Article  ADS  Google Scholar 

  35. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8:129–38. https://doi.org/10.1038/nrd2742.

    Article  Google Scholar 

  36. Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliver Rev. 2007;59:748–58. https://doi.org/10.1016/j.addr.2007.06.008.

    Article  Google Scholar 

  37. Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701. https://doi.org/10.1038/nrc1958.

    Article  Google Scholar 

  38. Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small. 2010;6:1952–67. https://doi.org/10.1002/smll.200901789.

    Article  Google Scholar 

  39. Yan Y, Such GK, Johnston APR, Best JP, Caruso F. Engineering particles for theurapeutic delivery: prospects and challenges. ACS Nano. 2012;6:3663–9.

    Article  Google Scholar 

  40. Oberdörster G, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004; 16: 437–45. doi:https://doi.org/10.1080/08958370490439597.

    Article  Google Scholar 

  41. Dawson KA, Salvati A, Lynch I. Nanoparticles reconstruct lipids. Nat Nanotechnol. 2009;4:84–5. https://doi.org/10.1038/nnano.2008.426.

    Article  ADS  Google Scholar 

  42. Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 2005;102:9469–74.

    Article  ADS  Google Scholar 

  43. Slowing I, Trewyn BG, Lin VSY. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human Cancer cells. J Am Chem Soc. 2006;128:14792–3. https://doi.org/10.1021/ja0645943.

    Article  Google Scholar 

  44. Kim BYS, Rutka JT, Chan WCW. Nanomedicine. New Engl J Med. 2010;363:2434–43. https://doi.org/10.1056/NEJMra0912273.

    Article  Google Scholar 

  45. Nam J-M, Thaxton CS, Mirkin CA. Nanoparticle-based bio-Bar codes for the ultrasensitive detection of proteins. Science. 2003;301:1884–6.

    Article  ADS  Google Scholar 

  46. Shad Thaxton C, et al. Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc Natl Acad Sci U S A. 2009.

    Google Scholar 

  47. Lin X, et al. Nanozyme-based bio-barcode assay for high sensitive and logic-controlled specific detection of multiple DNAs. Biosens Bioelectron. 2017; 94: 471–7. doi:10.1016/j.bios.2017.01.008.

    Article  Google Scholar 

  48. Sakamoto JH, et al. Enabling individualized therapy through nanotechnology. Pharmacol Res. 2010; 62: 57–89. doi:10.1016/j.phrs.2009.12.011.

    Article  Google Scholar 

  49. Kramer-Marek G, Kiesewetter DO, Capala J. Changes in HER2 expression in breast cancer xenografts after therapy can be quantified using PET and (18)F-labeled affibody molecules. J Nucl Med. 2009;50:1131–9. https://doi.org/10.2967/jnumed.108.057695.

    Article  Google Scholar 

  50. Lee J-H, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med. 2006; 13: 95. doi:https://doi.org/10.1038/nm1467.

    Article  Google Scholar 

  51. Hudziak RM, et al. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol. 1989;9:1165–72.

    Article  Google Scholar 

  52. Bagalkot V, et al. Quantum Dot−Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on Bi-Fluorescence resonance energy transfer. Nano Lett. 2007; 7: 3065–70, doi:https://doi.org/10.1021/nl071546n.

    Article  ADS  Google Scholar 

  53. Karathanasis E, et al. Imaging nanoprobe for prediction of outcome of nanoparticle chemotherapy by using mammography. Radiology. 2009; 250: 398–406, doi:https://doi.org/10.1148/radiol.2502080801.

    Article  Google Scholar 

  54. Chan JM, et al. Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc Natl Acad Sci U S A. 2010.

    Google Scholar 

  55. Hu C-MJ, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv. 2010;1:323–34. https://doi.org/10.4155/tde.10.13.

    Article  Google Scholar 

  56. Jia J, et al. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov. 2009;8:111–28.

    Article  Google Scholar 

  57. de Gaetano Donati K, Rabagliati R, Iacoviello L, Cauda R. HIV infection, HAART, and endothelial adhesion molecules: current perspectives. Lancet Infect Dis. 2004; 4:213–22, doi:https://doi.org/10.1016/S1473-3099(04)00971-5.

    Article  Google Scholar 

  58. Suarez-Pinzon WL, et al. Combination therapy with glucagon-like Peptide-1 and gastrin restores Normoglycemia in diabetic NOD mice. Diabetes. 2008;57:3281–8.

    Article  Google Scholar 

  59. Kolishetti N, et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci U S A. 2010;107:17939–44.

    Article  ADS  Google Scholar 

  60. Langer R. Drugs on target. Science. 2001;293:58–9.

    Article  Google Scholar 

  61. Zhang L, et al. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2007; 83: 761–9. doi:https://doi.org/10.1038/sj.clpt.6100400.

    Article  Google Scholar 

  62. LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21:1184–91. https://doi.org/10.1038/nbt876.

    Article  Google Scholar 

  63. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliver Rev. 2012;64:206–12. https://doi.org/10.1016/j.addr.2012.09.033.

    Article  Google Scholar 

  64. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliver. Rev. 2012;64:24–36. https://doi.org/10.1016/j.addr.2012.09.006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, YC., Moon, JY. (2020). Interaction of Nanomaterials with Biological Systems. In: Introduction to Bionanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1293-3_4

Download citation

Publish with us

Policies and ethics