Skip to main content

Gabor Filter and ICA-Based Facial Expression Recognition Using Two-Layered Hidden Markov Model

  • Conference paper
  • First Online:
Advances in Computational Intelligence and Communication Technology

Abstract

This paper introduces the framework based on the extraction of features using Gabor filters and modified hidden Markov model for classification. The three regions of interest (nose, mouth and eyes) are extracted using Gabor filters and dimensions are reduced by independent component analysis. Then these reduced dimensions are input to our two-layered HMM for training and testing. Seven facial expressions are recognized using publicly available JAFFE dataset. Experimental data shows the efficient and robust nature of our framework and shows its uniqueness on comparing it with other existing available methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Ekman, An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)

    Article  Google Scholar 

  2. A. Mehrabian et al., Silent Messages, vol. 8 (Wadsworth Belmont, CA, 1971)

    Google Scholar 

  3. G. Molinari, C. Bozelle, D. Cereghetti, G. Chanel, M. Bétrancourt, T. Pun, Feedback emotionnel et collaboration médiatisée par ordinateur: Quand la perception des interactions est liée aux traitsémotionnels. In Environnements Informatiques pour l’apprentissage humain, Actes de la conférence EIAH (2013), pp. 305–326

    Google Scholar 

  4. F. Ahmed, H. Bari, E. Hossain, Person-independent facial expression recognition based on compound local binary pattern (clbp). Int. Arab J. Inf. Technol. 11(2), 195–203 (2014)

    Google Scholar 

  5. G. Lei, X.-h. Li, J.-l. Zhou, X.-g. Gong, Geometric feature based facial expression recognition using multiclass support vector machines, in IEEE International Conference on Granular Computing, 2009, GRC’09 (IEEE, 2009), pp. 318–321

    Google Scholar 

  6. C. Shan, S. Gong, P.W. McOwan, Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)

    Article  Google Scholar 

  7. F. Bashar, A. Khan, F. Ahmed, M.H. Kabir, Robust facial expression recognition based on median ternary pattern (mtp), in 2013 International Conference on Electrical Information and Communication Technology (EICT) (IEEE, 2014), pp. 1–5

    Google Scholar 

  8. T. Gritti, C. Shan, V. Jeanne, R. Braspenning, Local features based facial expression recognition with face registration errors. in 8th IEEE International Conference on Automatic Face & Gesture Recognition, 2008. FG’08, (IEEE, 2008) pp. 1–8

    Google Scholar 

  9. S.S. Meher and P. Maben, Face recognition and facial expression identification using pca, in Advance Computing Conference (IACC), 2014 IEEE International (IEEE, 2014), pp. 1093–1098

    Google Scholar 

  10. P. Carcagnì, M. Coco, M. Leo, C. Distante, Facial expression recognition and histograms of oriented gradients: a comprehensive study. SpringerPlus 4(1), 1 (2015)

    Article  Google Scholar 

  11. A.A. Gunawan et al., Face expression detection on kinect using active appearance model and fuzzy logic. Procedia Comput. Sci. 59, 268–274 (2015)

    Article  Google Scholar 

  12. R. Shbib, S. Zhou, Facial expression analysis using active shape model. Int. J. Sig. Process. Image Process. Pattern Recognit. 8(1), 9–22 (2015)

    Google Scholar 

  13. J. de Andrade Fernandes, L.N. Matos, M.G. dos Santos Arag˜ao, Geometrical approaches for facial expression recognition using support vector machines, in Conference on Graphics, Patterns and Images (SIBGRAPI), 2016 29th SIBGRAPI (IEEE, 2016), pp. 347–354

    Google Scholar 

  14. L. Wang, R. Li, K. Wang, A novel automatic facial expression recognition method based on AAM. J. Comput. 9(3), 608–617 (2014)

    Google Scholar 

  15. J. Chen, Z. Chen, Z. Chi, H. Fu, Facial expression recognition based on facial components detection and hog features, in International Workshops on Electrical and Computer Engineering Subfields (2014), pp. 884–888

    Google Scholar 

  16. A.R. Rivera, J.R. Castillo, O.O. Chae, Local directional number pattern for face analysis: face and expression recognition. IEEE Trans. Image Process. 22, 1740–1752 (2013). https://doi.org/10.1109/TIP.2012.2235848

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Li, A. Soares, Automatic facial expression recognition using 3D faces. Int. J. Eng. Res. Innov. 3, 30–34 (2011)

    Google Scholar 

  18. C. Shan, S. Gong, P.W. McOwan, Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27, 803–816 (2009). https://doi.org/10.1016/j.imavis.2008.08.005

    Article  Google Scholar 

  19. S. Jain, C. Hu, J.K. Aggarwal, Facial expression recognition with temporal modeling of shapes, in Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain. 6–13 Nov 2011 (IEEE Piscataway, NJ, USA, 2011), pp. 1642–1649

    Google Scholar 

  20. T. Wu, M.S. Bartlett, J.R. Movellan, Facial expression recognition using Gabor motion energy filters, in Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), San Francisco, CA, USA, 13–18 June 2010, (IEEE, Piscataway, NJ, USA, 2010), pp. 42–47

    Google Scholar 

  21. L. Zhang, M. Jiang, D. Farid, M.A. Hossain, Intelligent facial emotion recognition and semantic-based topic detection for a humanoid robot. Expert Syst. Appl. 40, 5160–5168 (2013). https://doi.org/10.1016/j.eswa.2013.03.016

    Article  Google Scholar 

Download references

Acknowledgements

Japanese Female Facial Expression (JAFFE) is publicly available datasets. It is available free of charge from Web site http://www.kasrl.org/jaffe.html. The database was planned and assembled by Michael Lyons, Miyuki Kamachi and Jiro Gyoba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Kumar Goyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahul, M., Shukla, R., Goyal, P.K., Siddiqui, Z.A., Yadav, V. (2021). Gabor Filter and ICA-Based Facial Expression Recognition Using Two-Layered Hidden Markov Model. In: Gao, XZ., Tiwari, S., Trivedi, M., Mishra, K. (eds) Advances in Computational Intelligence and Communication Technology. Advances in Intelligent Systems and Computing, vol 1086. Springer, Singapore. https://doi.org/10.1007/978-981-15-1275-9_42

Download citation

Publish with us

Policies and ethics