Skip to main content

Introduction to Perovskites: A Historical Perspective

Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

  • The original version of this chapter was revised: The text in figure 1 has been amended and the patent number has been included in the references. The correction to this chapter is available at https://doi.org/10.1007/978-981-15-1267-4_12

Abstract

The chapter focuses on how the name perovskite evolved from being used for a particular, and geologically not very relevant, mineral discovered in the eighteen century to symbolize a vast number of essential materials in our society that are also intensively investigated nowadays due to their promising applications. The transition took decades to occur and involved several scientists from different but related disciplines such as geology, mineralogy, chemistry, and physics. Here, a short and condensed account of the history of research on perovskites since the discovery of the mineral is given. The account would include how and when the perovskite family grew and incorporated related structures such as the hexagonal perovskites, double (or elpasolite) perovskites, Aurivillius and Ruddlesden-Popper layered phases, and oxygen-deficient compounds, among others. Special attention is given to the relevant scientists that inspired hundreds of others.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Change history

  • 16 April 2020

    The original version of the book was inadvertently published with an incorrect spelling of the text in figure 1 in chapter 1 and the patent numbers has been added to the references of the chapter 1. The chapter and book have been updated with the changes.

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    CAS  Google Scholar 

  2. Scientific American Custom Media (2018) The Perovskite boom. Sci Am. https://www.scientificamerican.com/custom-media/pictet/the-perovskite-boom/. Accessed 20 Aug 2018

  3. Sivaram V, Stranks SD, Snaith HJ (2015) Outshining silicon. Sci Am 313:54–59

    Google Scholar 

  4. Rose G (1839) Beschreibung einiger neuer Mineralien vom Ural. Ann der Phys und Chemie 48:551–572

    Google Scholar 

  5. Chakhmouradian AR, Woodward PM (2014) Celebrating 175 years of perovskite research: a tribute to Roger H. Mitchell. Phys Chem Miner 41:387–391

    CAS  Google Scholar 

  6. Mitchell RH (2002) Perovskites: modern and ancient, 1st edn. Almaz Press Inc., Thunder Bay, Ontario

    Google Scholar 

  7. Tilley RJD (2016) Perovskites. Structure-property Relationships, 1st ed. Wiley, Chichester

    Google Scholar 

  8. Granger P, Parvulescu VI, Kaliaguine S, Prellier W (2016) Perovskites and related mixed oxides. Concepts and applications. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  9. Sinkankas J, Sinkankas GM (1994) Humboldt’s travels in siberia 1837-1842 and the gemstones by Gustav Rose. Geoscience Press, Phoenix

    Google Scholar 

  10. Navrotsky A, Weidner DJ (1989) Perovskite_ a structure of great interest to geophysics and materials science. Am Geophys Union, Washington, D.C

    Google Scholar 

  11. Des Cloizeaux A (1845) Notes sur les formes cristallines de la Perowskite. Ann Chim Phys 3:338–342

    Google Scholar 

  12. Damour A (1855) Notice sur la pérowskite de Zermatt: espèce minérale. Victor Dalmont, Paris

    Google Scholar 

  13. Ébelmen JJ (1851) Recherches sur la cristallisation par la voie séche. Compt Rend Séan Acad Scien XXXII:710–712

    Google Scholar 

  14. Hautefeille P (1864) De la reproduction du sphene et de la pérowskite. Comptus Rendus des Séances L’Académie des Sci 59:698–701

    Google Scholar 

  15. Philips W, Miller WH, Brooke HJ (1852) An elementary introduction to mineralogy, 10th edn. Longman, London

    Google Scholar 

  16. Dana JD (1854) A system of mineralogy (comprising the most recent discoveries), vols 1 and 2, 4th ed. George P. Putnam and Co., New York

    Google Scholar 

  17. Dufrénoy A (1856) Traité de Miéralogie, 12th edn. Victor Dalmont, Paris

    Google Scholar 

  18. Des Cloizeaux A (1859) Nouvelles recherches sur les proprietés biréfringentes des corps cristallisés. Comptus Rendus des Séances L’Académie des Sci 48:263–267

    Google Scholar 

  19. Des Cloizeaux A (1858) Memoire sur l’emploi des proprietes optiques birefringentes, pour la distinction et la classification des mineraux cristallises. Ann des Mines 14:339–420

    Google Scholar 

  20. Kay HF, Bailey PC (1957) Structure and properties of CaTiO3. Acta Crystallogr 10:219–226

    CAS  Google Scholar 

  21. Bowman HL (1908) On the structure of perovskite from the Burgumer alp, Pfitschthal, Tyrol. Mineral Mag 15:156–176

    Google Scholar 

  22. Miers HA (1902) Mineralogy. An introduction to the scientific study of minerals. Macmillan and Co. Limited, New York

    Google Scholar 

  23. Holmquist PJ (1898) Synthetische Studien über die perowskit- und Pyrocholremineralien. Bull Geol Inst Univ Upsala III:181–266

    Google Scholar 

  24. Baumhauer H (1880) Ueber den Perowskit. Zeitschrift für Krist-Cryst Mater 4:187

    Google Scholar 

  25. Baumhauer H (1883) (Auszüge) A. Ben Saude: Über den Perowskit. Zeitschrift für Krist-Cryst Mater 7:612–615

    Google Scholar 

  26. Böggild OB (1912) Krystallform und zwillingsbildungen des Kryolits, des Perowskits und des Boracits. Zeitschrift für Krist-Cryst Mater 50:349–429

    Google Scholar 

  27. Bowman HL (1908) An attachment to the goniometer for use in the measurement of crystals with complex faces. Mineral Mag 15:177–179

    Google Scholar 

  28. Levi GR, Natta G (1925) Sulla struttura cristallina della perowskite. Rend Accad Naz Lincei 2:39–46

    CAS  Google Scholar 

  29. Barth TFW (1925) Die Kristallstruktur von Perowskit und verwandten Verbidungen. Nor Geol Tidsskr 8:201–216

    CAS  Google Scholar 

  30. Zedlitz O (1936) Untersuchungen an perowskit, Uhligit und dysanalyt. Fortschr Miner Krist Petrog 20:66–68

    CAS  Google Scholar 

  31. Zedlitz O (1939) Der Perowskit. Mineralogische und röntgenographische Untersuchungen an Perowskit, Uhligit und Dysanalyt sowie an deren synthetischen Produkten. Neues Jahrb Miner Geol, Beilage Bd A 75:245–296

    Google Scholar 

  32. Náray-Szabó I (1943) Der Strukturtyp des Perowskits (CaTiO3). Naturwissenschaften 31:202–203

    Google Scholar 

  33. Tanaka Y (1941) Studies on the reactions between oxides in solid state at higher temperatures II. The reaction between calcium oxide and titanium oxide and the photosensitivity of calcium titanate. Bull Chem Soc Jpn 16:455–463

    CAS  Google Scholar 

  34. Zedlitz O (1943) Der Strukturtyp des Perowskit (CaTiO3)-Zur Original-Mitteilung von Náray-Szabó. Naturwissenschaften 31:369

    CAS  Google Scholar 

  35. Megaw HD (1956) Ferroelectricity In Crystals. Methuen, London

    Google Scholar 

  36. Megaw HD (1946) Crystal Structure of double oxides of the perovskite type. Proc Phys Soc 58:133–152

    CAS  Google Scholar 

  37. Sasaki S, Prewitt CT, Bass JD, Schulze WA (1987) Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group. Acta Crystallogr Sect C 43:1668–1674

    Google Scholar 

  38. Beran A, Libowitzky E, Armbruster T (1996) A single-crystal infrared spectroscopic and X-ray-diffraction study of untwinned San Benito perovskite containing OH groups. Can Mineral 34:803–809

    CAS  Google Scholar 

  39. Arakcheeva AV, Pushcharovsky DY, Gekimyants VM et al (1997) Crystal structure and microtwinning of natural orthorhombic perovskite catio3. Crystallogr Rep 42:46–54

    Google Scholar 

  40. Meisheng Hu, Wenk HR, Sinitsyna D (1992) Microstructures in natural perovskites. Am Mineral 77:359–373

    Google Scholar 

  41. Glazer AM (1975) Simple ways of determining perovskite structures. Acta Crystallogr Sect A 31:756–762

    Google Scholar 

  42. Szinicz L (2005) History of chemical and biological warfare agents. Toxicology 214:167–181

    CAS  Google Scholar 

  43. Mason B (1992) Victor moritz goldschmidt: father of modern geochemistry. The Geochemical Society, San Antonio

    Google Scholar 

  44. Bernal JD (1948) The goldschmidt memorial lecture. J Chem Soc 2108–2114

    Google Scholar 

  45. Jensen WB (2010) The origin of the ionic-radius ratio rules. J Chem Educ 87:587–588

    CAS  Google Scholar 

  46. Goldschmidt VM, Barth T, Lunde G, Zachariasen WH (1926) Geochemische Verteilungsgesetz der elemente (VII). Skr Nor Vidensk Akad Oslo I, Mat Naturv Klasse 2:1–117

    Google Scholar 

  47. Zachariasen WH (1928) The crystal structure of sesquioxides and compounds of the type ABO3. Skr Nor Vidensk Akad Oslo I, Mat Naturv Klasse 4:7–165

    Google Scholar 

  48. Natta G (1927) Struttura cristallina del tricloromercuriato di cesio. Rend Accad Naz Lincei 5:1003–1008

    CAS  Google Scholar 

  49. Natta G, Passerini L (1928) isomorfismo, polimorfismo e morfotropia-I. Composti del tipo ABX3. Gazz Chim It 58:472–484

    CAS  Google Scholar 

  50. Ferrari A, Baroni A (1927) Sulla struttura del cloruro doppio de cadmio e cesio CsCdCl3. Considerazioni sulla struttura monometrica tipo ABX3. Rend Accad Naz Lincei 6:418–422

    CAS  Google Scholar 

  51. Wyckoff RWG (1964) Crystal structures. Inorganic Compounds RXn, RnMX2, RnMX3, vol 2, 2nd ed. Interscience Publishers (Wiley), New York

    Google Scholar 

  52. Evans RC (1939) An introduction to crystal chemistry. Cambridge University Press, London

    Google Scholar 

  53. van Arkel AE (1925) Kristalstruktuur van magnesium fluoride en andere verbindingen van hetzelfde krystaltype. Physica 5:162–171

    Google Scholar 

  54. Wyckoff RWG (1931) The structure of crystals. The chemical catalog company Inc, New York

    Google Scholar 

  55. Waldbauer L, McCann DC (1934) Caesium nitrate and the perovskite structure. J Chem Phys 2:615–617

    CAS  Google Scholar 

  56. Nielsen R, Goldschmidt VM (1920) Process of producing pigments, US1343468, pp 1–3

    Google Scholar 

  57. Nielsen R, Goldschmidt VM (1920) Titanium products and the process of producing same from precipitated titanium hydrates, US1343469, pp 1–3

    Google Scholar 

  58. Robertson DW (1936) Lead titanate. Ind Eng Chem 28:216–218

    CAS  Google Scholar 

  59. Robertson DW, Jacobsen AE (1936) Physical study of two-coat paint systems. Ind Eng Chem 28:403–407

    CAS  Google Scholar 

  60. Rinse J (1958) Lead titanate paints in Holland. Paint Varn Prod 98–100

    Google Scholar 

  61. Cole SS, Espenschied H (1937) Lead titanate: crystal structure, temperature of formation, and specific gravity data. J Phys Chem 41:445–451

    CAS  Google Scholar 

  62. Náray-Szabó I (1943) Die Strukturen von Verbindungen ABO3. “Schwesterstrukturen.” Naturwissenschaften 31:466

    Google Scholar 

  63. Náray-Szabó I (1947) The perovskite-structure family. Muegyetemi Kozlemenyek 1:30–34

    Google Scholar 

  64. Hägg G (1935) The spinels and the cubic sodium-tungsten bronzes as new examples of structures with vacant lattice points. Nature 135:874

    Google Scholar 

  65. Hägg G (1935) Zur Kenntnis der kubischen Natrium—Wolfram-Bronzen. Zeitschrift für Phys Chemie 29B:192–204

    Google Scholar 

  66. de Jong WF (1932) Die Kristallstruktur der regulären Na-W-Bronzen. Zeitschrift für Krist-Cryst Mater 81:314

    Google Scholar 

  67. Rooksby H (1945) Compounds of the structural type of Calcium Titanate. Nature 155:484

    CAS  Google Scholar 

  68. Muller O, Roy R (1974) The major ternary structural families. Springer, New York

    Google Scholar 

  69. Glazer AM (2011) A brief history of tilts. Phase Trans 84:405–420

    CAS  Google Scholar 

  70. Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Crystallogr Sect B 28:3384–3392

    CAS  Google Scholar 

  71. Woodward PM (1997) Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallogr Sect B Struct Sci 53:32–43

    Google Scholar 

  72. Stokes HT, Kisi EH, Hatch DM, Howard CJ (2002) Group-theoretical analysis of octahedral tilting in ferroelectric perovskites. Acta Crystallogr Sect B 58:934–938

    Google Scholar 

  73. Howard CJ, Stokes HT (2005) Structures and phase transitions in perovskites-A group-theoretical approach. Acta Crystallogr Sect A Found Crystallogr 61:93–111

    Google Scholar 

  74. Megaw HD (1945) Crystal structure of barium titanate. Nature 155:484–485

    CAS  Google Scholar 

  75. Setter N, Colla EL (1993) Ferroelectric ceramics. Tutorial reviews, theory, processing, and applications, 1st ed. Birkhäuser, Basel

    Google Scholar 

  76. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press Inc., London

    Google Scholar 

  77. Galasso FS (1969) Structure, properties and preparation of perovskite-type compounds. Pergamon Press

    Google Scholar 

  78. Haertling GH (2004) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818

    Google Scholar 

  79. Cross LE, Newnham RE (1987) History of ferroelectrics. In: Kingery WD (ed) Ceramics and civilization 3, High technology ceramics: past, present, and future. The American Ceramic Society, Westerville, pp 289–305

    Google Scholar 

  80. U.S. National Research Council (1940) Industrial research laboratories of the United States including consulting research laboratories, 7th ed. National Research Council, National Academy of Sciences, Washington, D.C

    Google Scholar 

  81. Wainer E, Thielke NR (1942) Dielectric material and method of making the same, US2277733, pp 1–4

    Google Scholar 

  82. Wainer E, Thielke NR (1942) Dielectric material and method of making the same, US2277736, pp 1–2

    Google Scholar 

  83. Thurnauer H, Deaderick J (1947) Insulating material, US2429588, pp 1–3

    Google Scholar 

  84. Newnham RE, Cross LE (2005) Ferroelectricity: the foundation of a field from form to function. MRS Bull 30:845–848

    CAS  Google Scholar 

  85. Wainer E (1946) High titania dielectrics. J Electrochem Soc 89:331–356

    Google Scholar 

  86. Acosta M, Novak N, Rojas V et al (2017) BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl Phys Rev 4:41305

    Google Scholar 

  87. von Hippel A, Breckenridge RG, Chesley FG, Tisza L (1946) High dielectric constant ceramics. Ind Eng Chem 38:1097–1109

    Google Scholar 

  88. Wul B (1945) Dielectric constants of some titanates. Nature 156:480

    Google Scholar 

  89. Jaffe H (1950) Titanate ceramics for electromechanical purposes. Ind Eng Chem 42:264–268

    CAS  Google Scholar 

  90. Fujishima S (2000) The history of ceramic filters. IEEE Trans Ultrason Ferroelectr Freq Control 47:1–7

    CAS  Google Scholar 

  91. Jaffe B, Roth RS, Marzullo S (1954) Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J Appl Phys 25:809–810

    CAS  Google Scholar 

  92. Smolenskii GA, Agranovskaya AI (1958) Dielectric polarization and losses of some complex compounds. Sov Phys Tech Phys 3:1380–1382

    CAS  Google Scholar 

  93. Mitsui T, Abe R, Furuhata Y, et al (1969) Ferro and antiferroelectric substances. Landolt-Bornstein numerical data and functional relationships, vol 3. Springer, Berlin

    Google Scholar 

  94. Megaw HD (1947) Temperature changes in the crystal structure of barium titanium oxide. Proc R Soc Lond A 189:261–283

    CAS  Google Scholar 

  95. Kay HF, Vousden P (1949) XCV. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties. Philos Mag 40:1019–1040

    CAS  Google Scholar 

  96. Wood EA (1951) Polymorphism in potassium niobate, sodium niobate, and other AB03 compounds. Acta Crystallogr 4:353–362

    CAS  Google Scholar 

  97. Jackson W, Reddish W (1945) High permittivity crystalline aggregates. Nature 156:717

    CAS  Google Scholar 

  98. Rushman DF, Strivens MA (1946) The permittivity of polycrystals of the perovskite type. Trans Faraday Soc 42:A231–A238

    Google Scholar 

  99. Van Santen JH, Jonker GH (1950) Electrical conductivity of ferromagnetic compounds of manganese with perovskite structure. Physica 16:599–600

    Google Scholar 

  100. Jonker GH, Van Santen JH (1950) Ferromagnetic compounds of manganese with perovskite structure. Physica 16:337–349

    CAS  Google Scholar 

  101. Zener C (1951) Interaction between d Shells in the transition metals. Phys Rev 81:440–444

    CAS  Google Scholar 

  102. Zener C (1951) Interaction between d Shells in the transition metals. II. Ferromagnetic Compounds of manganese with perovskite structure. Phys Rev 82:403–405

    CAS  Google Scholar 

  103. Goodenough JB (1955) Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys Rev 100:564–573

    CAS  Google Scholar 

  104. Anderson PW, Hasegawa H (1955) Considerations on double exchange. Phys Rev 100:675–681

    CAS  Google Scholar 

  105. Kanamori J (1959) Superexchange interaction and symmetry properties of electron orbitals. J Phys Chem Solids 10:87–98

    CAS  Google Scholar 

  106. de Gennes P-G (1960) Effects of double exchange in magnetic crystals. Phys Rev 118:141–154

    Google Scholar 

  107. Roth RS (1957) Classification of perovskite and other ABO3-type compounds. J Res Natl Bur Stand 58:75–88

    Google Scholar 

  108. Keith ML, Roy R (1954) Structural relations among double oxides of trivalent elements. Am Miner 39:1–23

    CAS  Google Scholar 

  109. Roy R (1954) Multiple Ion substitution in the perovskite lattice. J Am Ceram Soc 37:581–588

    Google Scholar 

  110. Steward EG, Rooksby HP (1953) Transitions in crystal structure of cryolite and related fluorides. Acta Crystallogr 6:49–52

    CAS  Google Scholar 

  111. Steward EG, Rooksby HP (1951) Pseudo-cubic alkaline-earth tungstates and molybdates of the R3MX6 type. Acta Crystallogr 4:503–507

    CAS  Google Scholar 

  112. Galasso F, Katz L, Ward R (1959) Substitution in the octahedrally coordinated cation positions in compounds of the perovskite type. J Am Chem Soc 81:820–823

    CAS  Google Scholar 

  113. Brixner LH (1960) Preparation and structure determination of some new cubic and tetragonally distorted perovskites. J Phys Chem 54:1956–1957

    Google Scholar 

  114. Wyckoff RWG (1965) Crystal Structures. Inorganic Compounds Rx(MX4)y, Rx(MnXp)y, Hydrates and ammoniates, vol 3, 2nd ed. Interscience Publishers (Wiley), New York

    Google Scholar 

  115. Wells AF (1945) Structural inorganic chemistry. Clarendon Press, Oxford

    Google Scholar 

  116. Elliott N, Pauling L (1938) The crystal structure of cesium aurous auric chloride, Cs2AuAuCl6, and cesium argentous auric chloride, Cs2AgAuCl6. J Am Chem Soc 60:1846–1851

    CAS  Google Scholar 

  117. Pauling L (1924) The crystal structures of ammonium fluoferrate, fluo-aluminate and OXYFLUOMOLYBDATE. J Am Chem Soc 46:2738–2752. https://doi.org/10.1021/ja01677a019

    CrossRef  CAS  Google Scholar 

  118. Megaw HD (1973) Crystal structures: a working approach, 1st ed. W. B. Saunders Company, London

    Google Scholar 

  119. Cross W, Hillebrand WF (1883) On minerals of the cryolite group recently found in Colorado. Am J Sci XXVI:271–294

    Google Scholar 

  120. Cross W, Hillebrand WF (1885) Contributions to the mineralogy of the Rocky Mountains

    Google Scholar 

  121. Menzer G (1932) Ueber die Kristallstrukturen der Kryolithgruppe. Fortschritte der Mineral 17:61

    Google Scholar 

  122. Vasala S, Karppinen M (2015) A2B′B″O6 perovskites: a review. Prog Solid State Chem 43:1–36

    CAS  Google Scholar 

  123. Flerov IN, Gorev MV, Aleksandrov KS et al (1998) Phase transitions in elpasolites (ordered perovskites). Mater Sci Eng R Rep 24:81–151

    Google Scholar 

  124. Anderson MT, Greenwood KB, Taylor GA, Poeppelmeier KR (1993) B-Cation arrangements in double perovskites. Prog Solid State Chem 22:197–233

    CAS  Google Scholar 

  125. Ewing FJ, Pauling L (1928) The crystal structure of potassium chloroplatinate. Zeitschrift für Krist-Cryst Mater 68:223

    CAS  Google Scholar 

  126. Dickinson RG (1922) The crystal structures of potassium and ammonium chlorostannates. J Am Chem Soc 44:276–288

    CAS  Google Scholar 

  127. Bozorth RM (1922) The crystal structure of ammonium fluosilicate. J Am Chem Soc 44:1066–1070

    CAS  Google Scholar 

  128. Katz L, Ward R (1964) Structure relations in mixed metal oxides. Inorg Chem 3:205–211

    CAS  Google Scholar 

  129. Wells AF (1962) Structural inorganic chemistry, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  130. Longo JM, Kafalas JA (1969) The effect of pressure and B-cation size on the crystal structure of CsBF3 compounds (B = Mn, Fe Co, Ni, Zn, Mg). J Solid State Chem 1:103–108

    CAS  Google Scholar 

  131. Evans HT, Burbank RD (1948) The crystal structure of hexagonal barium titanate. J Chem Phys 634:634

    Google Scholar 

  132. Balz D, Plieth K (1955) Die Struktur des Kaliumnickelfluorids, K2NiF. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für Phys Chemie 59:545–551

    CAS  Google Scholar 

  133. Balz D (1953) Über die Struktur des K2NiF4. Naturwissenschaften 40:241

    CAS  Google Scholar 

  134. Ruddlesden SN, Popper P (1957) New compounds of the K2NIF4 type. Acta Crystallogr 10:538–539

    CAS  Google Scholar 

  135. Ruddlesden SN, Popper P (1958) The compound Sr3Ti2O7 and its structure. Acta Crystallogr 11:54–55

    CAS  Google Scholar 

  136. Smolenskii GA, Isupov VA, Agranovskaya AI (1961) Ferroelectrics of the oxygen-octahedral type with layered structure. Sov Phys Solid State 3:651–655

    Google Scholar 

  137. Bednorz JG, Müller KA (1986) Possible high Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift für Phys B Condens Matter 193:267–271

    Google Scholar 

  138. Yani C, Yong S, Jiajun P et al (2017) 2D Ruddlesden-Popper Perovskites for Optoelectronics. Adv Mater 30:1703487

    Google Scholar 

  139. Gu X-K, Samira S, Nikolla E (2018) Oxygen sponges for electrocatalysis: oxygen reduction/evolution on nonstoichiometric, mixed metal oxides. Chem Mater 30:2860–2872

    CAS  Google Scholar 

  140. Aurivillius B (1949) Mixed bismuth oxides with layer lattices: I, structure type of CaNb2Bi209. Ark för Kemi 1:463–480

    CAS  Google Scholar 

  141. Aurivillius B (1949) Mixed bismuth oxides with layer lattices. II. Structure of Bi4Ti3O12. Ark för Kemi 1:499–512

    CAS  Google Scholar 

  142. Subbarao EC (1961) Ferroelectricity in Bi4Ti3O12 and its solid solutions. Phys Rev 122:804–807

    CAS  Google Scholar 

  143. Subbarao EC (1962) A family of ferroelectric bismuth compounds. J Phys Chem Solids 23:665–676

    CAS  Google Scholar 

  144. Moure A (2018) Review and perspectives of aurivillius structures as a lead-free piezoelectric system. Appl Sci 8:62

    Google Scholar 

  145. Hazen RM (1988) Superconductors, the breakthrough. Unwin and Hyman Ltd, London

    Google Scholar 

  146. Cr J (2000) Oxide superconductors. J Am Ceram Soc 83:5–28

    Google Scholar 

  147. Galasso FS (1990) Perovskites and high Tc superconductors. Gordon and Breach Science Publishers, New York

    Google Scholar 

  148. Hazen RM (1988) Perovskites. Sci Am 258:52–61

    Google Scholar 

  149. Strauss SW, Fankuchen I, Ward R (1951) Barium cobalt oxide of the perowskite type. J Am Chem Soc 73:5084–5086

    CAS  Google Scholar 

  150. Erchak M, Fankuchen I, Ward R (1946) Reaction between ferric oxide and barium carbonate in the solid phase. Identification of phases by x-ray diffraction1. J Am Chem Soc 68:2085–2093

    CAS  Google Scholar 

  151. Erchak M, Ward R (1946) Catalytic properties of the products of the solid phase reaction between barium carbonate and ferric oxide. J Am Chem Soc 2085:2093–2096

    Google Scholar 

  152. Parravano G (1952) Ferroelectric transitions and heterogenous catalysis. J Chem Phys 20:342–343

    CAS  Google Scholar 

  153. Parravano G (1953) Catalytic activity of lanthanum and strontium manganite. J Am Chem Soc 75:1497–1498

    CAS  Google Scholar 

  154. Macchesney JB, Sherwood RC, Potter JF (1965) Electric and magnetic properties of the strontium ferrates. J Chem Phys 43:1907–1913

    CAS  Google Scholar 

  155. Grenier J-C, Pouchard M, Georges R (1973) Variation thermique de la susceptibilite magnetique et de l’aimantation du ferrite bicalcique Ca2Fe2O5. Mater Res Bull 8:1413–1420

    CAS  Google Scholar 

  156. Grenier J-C, Darriet J, Pouchard M, Hagenmuller P (1976) Mise en evidence d’une nouvelle famille de phases de type perovskite lacunaire ordonnee de formule A3M3O8 (AMO2,67). Mater Res Bull 11:1219–1225

    CAS  Google Scholar 

  157. Schippers ABA, Brandwijk V, Gorter EW (1973) Derivation and discussion of crystal structures of compounds ABX3 and A2BX6: Part I. Derivation of the structures. J Solid State Chem 6:479–492

    CAS  Google Scholar 

  158. Goodenough JB, Graper W, Holtzberg F, et al (1970) Magnetic and other properties of oxides and related compounds, vol 4. Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III. Springer, Berlin

    Google Scholar 

  159. Smyth DM, Chang EK, Liu DH (1996) Travels through perovskite space. Phase Trans 58:57–73

    CAS  Google Scholar 

  160. Mitchell RH (1996) Perovskites: a revised classification scheme for an important rare earth element host in alkaline rocks. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals: chemistry, origin and ore deposits. Chapman & Hall, pp 41–76

    Google Scholar 

  161. Mitchell RH, Welch MD, Chakhmouradian AR (2017) Nomenclature of the perovskite supergroup: a hierarchical system of classification based on crystal structure and composition. Mineral Mag 81:411–461

    CAS  Google Scholar 

  162. Rao CNR, Bernard Raveau (1998) Transition metal oxides. Structure, properties, and synthesis of ceramic oxides, 2nd ed. Wiley-VCH, New York

    Google Scholar 

  163. Aleksandrov KS, Beznosikov VV (1997) Hierarchies of perovskite-like crystals (Review). Phys Solid State 39:695–715

    Google Scholar 

  164. Aleksandrov KS, Bartolomé J (2001) Structural distortions in families of perovskite-like crystals. Phase Trans 74:255–335

    CAS  Google Scholar 

  165. Beznosikov BV, Aleksandrov KS (2000) Perovskite-like crystals of the Ruddlesden-Popper series. Crystallogr Rep 45:792–798

    Google Scholar 

  166. Aleksandrov KS (1976) The sequences of structural phase transitions in perovskites. Ferroelectrics 14:801–805

    CAS  Google Scholar 

  167. Mitsui T, Nomura S, Adachi M, et al (1981) Ferroelectrics and related substances. Landolt-Bornstein numerical data and functional relationships, vol 16. Springer, Berlin

    Google Scholar 

  168. Jin S, Tiefel TH, Mccormack M, et al (1994) Thousandfold change in resistivity films in magnetoresistive La-Ca-Mn-O films. Science (80-) 264:413–415

    Google Scholar 

  169. Chahara K, Ohno T, Kasai M, Kozono Y (1993) Magnetoresistance in magnetic manganese oxide with instrincic antiferromagnetic spin structure. Appl Phys Lett 63:1990–1992

    CAS  Google Scholar 

  170. von Helmolt R, Wecker J, Holzapfel B et al (1993) Giant magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys Rev Lett 71:2331–2333

    Google Scholar 

  171. Simonds JL, John L (1995) Magnetoelectronics today and tomorrow. Mater Today 48:26–32

    Google Scholar 

  172. Jonker GH (1956) Magnetic compounds with perovskite structure IV conducting and non-conducting compounds. Physica 22:707–722

    CAS  Google Scholar 

  173. Tokura Y (2006) Critical features of colossal magnetoresistive manganites. Rep Prog Phys 69:797–851

    CAS  Google Scholar 

  174. Mathur N (2006) All aboard the manganite rollercoaster. Nat Mater 5:849–850

    CAS  Google Scholar 

  175. Bhalla A, Guo R, Roy R (2000) The Perovskite structure-a review of its role in ceramic science and technology. Mater Res Innov 4:3–26

    CAS  Google Scholar 

  176. Sleight AW, Gillson JL, Bierstedt PE (1975) High-temperature superconductivity in the BaPb1-xBixO3 systems. Solid State Commun 17:27–28

    CAS  Google Scholar 

  177. Weber MJ, Bass M, Andringa K et al (1969) Czochralski growth and properties of YAlO3 laser crystals. Appl Phys Lett 15:342–345

    CAS  Google Scholar 

  178. Massey GA (1970) Criterion for selection of CW laser host materials to increase available power in the fundamental mode. Appl Phys Lett 17:213–215

    Google Scholar 

  179. Haertling GH, Land CE (1971) Hot-Pressed (Pb, La)(Zr, Ti)O3 ferroelectric ceramics for electrooptic applications. J Am Ceram Soc 54:1–11

    CAS  Google Scholar 

  180. Haertling GH (1971) Improved Hot-pressed electrooptic ceramics in the (Pb, La)(Zr, Ti)O3 system. J Am Ceram Soc 54:303–309

    CAS  Google Scholar 

  181. Ringwood AE, Kesson SE, Ware NG et al (1979) Immobilisation of high level nuclear reactor wastes in SYNROC. Nature 278:219

    CAS  Google Scholar 

  182. Voorhoeve RJH, Johnson DW, Remeika JP, Gallagher PK (1977) Perovskite oxides: materials science in catalysis. Science 195:827–833

    Google Scholar 

  183. Meadowcroft DB (1970) Low cost oxigen electrode material. Nature 226:847–848

    CAS  Google Scholar 

  184. Libby WF (1971) Promising catalyst for auto exhaust. Science (80-) 171:499 LP-500

    Google Scholar 

  185. Sverdrup EF, Warde CJ, Eback RL (1973) Design of high-temperature solid-electrolyte fuel-cell batteries for maximum power output per unit volume. Energy Convers 13:129–141

    CAS  Google Scholar 

  186. Feduska W, Isenberg AO (1983) High-temperature solid oxide fuel cell—technical status. J Power Sources 10:89–102

    CAS  Google Scholar 

  187. Frost MJ, Symes RF (1970) Zoned perovskite-bearing chondrule from the Lance meteorite. Mineral Mag 37:724–726

    CAS  Google Scholar 

  188. Grossman L (1975) Petrography and mineral chemistry of Ca-rich inclusions in the Allende meteorite. Geochim Cosmochim Acta 39:433–454

    CAS  Google Scholar 

  189. Lin-gun L (1974) Silicate perovskite from phase transformations of pyrope-garnet at high pressure and temperature. Geophys Res Lett 1:277–280

    Google Scholar 

  190. Lin-gun L (1975) Post-oxide phases of forsterite and enstatite. Geophys Res Lett 2:417–419

    Google Scholar 

  191. Hemley RJ, Cohen RE (1992) Silicate Perovskite. Annu Rev Earth Planet Sci 20:553–600

    CAS  Google Scholar 

  192. Tejuca LG, Fierro JL (1993) Properties and applications of perovskite-type oxides. Marcel Dekker Inc, New York

    Google Scholar 

Download references

Acknowledgements

This work would have been impossible without the help of many colleagues (and librarians) who have provided me with many of references cited here and who have helped me with the understandings of those papers that were written in German or French. As naming all of them is impossible, I will just mention the institutions from which they have helped: the University of Edinburgh (particularly from CSEC), University of British Columbia, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Universidad Complutense de Madrid, Universidad de Murcia, Universidad de Zaragoza, and Pontificia Universidad Católica del Perú.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Ortega-San-Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ortega-San-Martin, L. (2020). Introduction to Perovskites: A Historical Perspective. In: Arul, N., Nithya, V. (eds) Revolution of Perovskite. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-1267-4_1

Download citation