Skip to main content

LEDs and Other Electronic Devices Based on Perovskite Materials

  • Chapter
  • First Online:
Revolution of Perovskite

Abstract

Hybrid organic–inorganic semiconductors, usually referred to as perovskites, are low-cost semiconductors that have interesting optoelectronic properties and the potential to revolutionize several electronic devices. In most cases, these are usually composed out of alternating organic and inorganic parts and can be synthesized as three or lower dimensional semiconductors, thus exhibiting interesting quantum phenomena arising from the inorganic network’s dimensionality decrease. These quantum phenomena are observable at room temperature for the hybrid low-dimensional systems due to extra dielectric confinement occurring on the electrons and holes due to the dielectric contrast between the inorganic and organic parts. These perovskites have been attracting intense attention for future optoelectronics and electronics due to their exceptional attributes, including high carrier mobility, chemically adjustable spectral absorption and luminescence range, 100% internal quantum efficiency as well as the simplicity and affordability of fabrication rendering. All the above features render these hybrid organic–inorganic materials as one of the most exceptional and market-competitive optoelectronic materials for device application such as photovoltaics, light-emitting diodes (LEDs), lasers, sensors, transistors, and more. Here, we review the hybrid organic–inorganic halide perovskites, the progress over the years, and their application in new technologies related to such electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papavassiliou GC (1981) Luminescence spectra and raman excitation profiles in small CdS particles. J Solid St Chem 40:330–335

    CAS  Google Scholar 

  2. Papavassiliou GC (1982) Luminescence spectra and raman excitation profiles in small CdS particles. J Mol Struct 79:395–398

    CAS  Google Scholar 

  3. Ekimov AI, Onushchenko AA (1982) Quantum size effect in the optical-spectra of semiconductor semi-crystal. Sov Phys Semicond-Ussr 16:775–778

    Google Scholar 

  4. Weisbuch C, Vinter B (1991) Quantum semiconductor structures. Acad. Press, London

    Google Scholar 

  5. Chemla DS (1993) Nonlinear Optics in Quantum-Confined Structures. Phys Today 36:46

    Google Scholar 

  6. Feldman M (ed) (2014) Nanolithography: the art of fabricating nanoelectronic and nanophotonic devices and systems. Woodhead Publishing

    Google Scholar 

  7. Jongh LJ, Botterman AC, Boer FR et al (1969) Transition temperature of the two-dimensional heisenberg ferromagnet with S = ½. J App Phys 40:1363–1365

    Google Scholar 

  8. Ishihara T, Takahashi J, Goto T (1989) Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Comm 69:933–936

    CAS  Google Scholar 

  9. Papavassiliou GC (1997) Three- and low- dimensional semiconductors inorganic semiconductors. Prog Solid State Chem 25:125–270

    CAS  Google Scholar 

  10. Li J, Guo H-Y, Zhang X (1994) CsAg5Te3: a new metal-rich telluride with a unique tunnel structure. J Alloys Comp 116:1–4

    CAS  Google Scholar 

  11. Zhang Z, Greenbakt M, Goodenough JB (1994) Synthesis, structure, and properties of the layered perovskite La3Ni2O7−δ. J Sol St Chem 108:402–409

    Google Scholar 

  12. Arima T, Tokura Y (1995) Optical study of electronic structure in perovskite-type RMO3 (R = La, Y; M = Sc, Ti, V, Cr, Mn, Fe Co, Ni, Cu). J Phys Soc Jpn 64:2488–2501

    CAS  Google Scholar 

  13. Murray CB, Nonis DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    CAS  Google Scholar 

  14. Rossetti R, Nakahara S, Brus LE (1983) Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J Chem Phvs 79:1086

    CAS  Google Scholar 

  15. Papavassiliou GC (1996) Synthetic three-and lower-dimensional semiconductors based on inorganic units. Mol Cryst Liq Cryst 286:231–238

    Google Scholar 

  16. Papavassiliou GC, Mousdis GA, Koutselas IB (1999) Some new organic-inorganic hybrid semiconductors based on metal-halide units: structural, optical, and related properties. Adv Mater Opt Electron 9:265–271

    CAS  Google Scholar 

  17. Papavassiliou GC, Koutselas IB, Terzis A et al (1995) Preparation and characterization of (C6H5CH2CH2NH3)4BiI7.H2O, (C6H5CH2CH2NH3)3BiBr6 and (C6H5CH2CH2NH3)3BiCl6. Zeitschr fur Naturforschung Sect B 50:1566–1569

    CAS  Google Scholar 

  18. Papavassiliou GC (1991) Optical and related properties of metal- halide chain compounds: bulk and small particles. In: Prassides K (ed) Mixed valencv systems: application in chemistry, physics and biology, vol 343. Springer, Netherlands, pp 395–400

    Google Scholar 

  19. Kojima N, Hasegawa M, Kitagawa H et al (1994) P-T phase diagram and gold valence state of the perovskite-type mixed-valence compounds Cs2Au2X6 (X = Cl, Br, and I) under high pressures. J Am Chem Soc 116:11368–11374

    CAS  Google Scholar 

  20. Shirai M (1993) Electronic band structures of mixed valence compounds Cs2Au2X6 (X = Cl, Br, and I). Svnth Metals 55–57:3389–3394

    Google Scholar 

  21. Sharada G, Mahale P, Koore BP et al (2016) Is CH3NH3PbI3 polar? J Phys Chem Lett 7:2412–2419

    Google Scholar 

  22. Kikuchi K, Takeoka Y, Rikukawa M et al (2044) Structure and optical properties of lead iodide based two-dimensional perovskite compounds containing fluorophenethylamines. Curr Appl Phys 4:599–602

    Google Scholar 

  23. Wang SM, Mitzi DB, Field CA et al (1995) Synthesis and characterization of [NH2C(I):NH2]3MI5 (M = Sn, Pb): stereochemical activity in divalent tin and lead halides containing single <110> perovskite sheets. J Am Chem Soc 117:5297–5302

    CAS  Google Scholar 

  24. Vincent BR, Robertson KN, Cameron TS et al (1987) Alkylammonium lead halides. Part 1. Isolated (PbI6)4− ions in (CH3NH3)4PbI6 2(H2O). Can J Chem 65:1042–1046

    CAS  Google Scholar 

  25. Papavassiliou GC, Patsis AP, Lagouvardos DJ et al (1993) Spectroscopic studies of (C10H21NH3)2PbI4, (CH3NH3)(C10H21NH3)2Pb2I7, (CH3NH3)PbI3, and similar compounds. Synth Metals 57:3889–3894

    CAS  Google Scholar 

  26. Yoon SJ, Draguta S, Manser JS et al (2016) Tracking iodide and bromide ion segregation in mixed halide lead perovskites during photoirradiation. ACS Energy Lett 1:290–296

    CAS  Google Scholar 

  27. Hoke ET, Slotcavage DJ, Dohner ER et al (2015) Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem Sci 6:613–617

    CAS  Google Scholar 

  28. Escrig LG, Sempere AM, Sessolo M et al (2015) Mixed iodide-bromide methylammonium lead perovskite-based diodes for light emission and photovoltaics. J Phys Chem Lett 6:3743–3748

    Google Scholar 

  29. Papavassiliou GC, Mousdis GA, Koutselas IB (2001) Excitonic bands in the spectra of some organic-inorganic hybrid compounds based on metal halide units. Monatshefte fuer Chemie 132:113–119

    CAS  Google Scholar 

  30. Hanamura E, Nagaosa N, Kumagai M et al (1988) Quantum wells with enhanced exciton effects and optical non-linearity. Mat Sci Eng B 1:255–258

    Google Scholar 

  31. Ishihara T, Takahashi J, Goto T (1190) Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1 NH3)2PbI4. Phys Rev B 42:11099

    Google Scholar 

  32. Papavassiliou GC, Koutselas IB (1995) Structural, optical and related properties of some natural three-and lower-dimensional semiconductor systems. Synth Met 71:1713–1714

    CAS  Google Scholar 

  33. Kamminga ME, Fang H-H, Filip MR et al (2016) Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem Mater 28:4554–4562

    CAS  Google Scholar 

  34. Vassilakopoulou A, Papadatos D, Zakouras I et al (2017) Mixtures of quasi-two and three dimensional hybrid organic-inorganic semiconducting perovskites for single layer LED. J All Compds 692:589–598

    CAS  Google Scholar 

  35. Papavassiliou GC, Mousdis GA, Koutselas IB et al (2001) Excitonic bands in the photoconductivity spectra of some organic-inorganic hybrid compounds based on metal halides units. Int J Mod Phys B 15:3727

    CAS  Google Scholar 

  36. Kojima A, Ikegami M, Teshima K et al (2012) Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media. Chem Lett 41:397–399

    CAS  Google Scholar 

  37. Hong X, Ishihara T, Nurmikko AV (1992) Photoconductivity and electroluminescence in lead iodide based natural quantum well structures. Sol State Commun 84:657–661

    CAS  Google Scholar 

  38. Hattori T, Taira T, Era M et al (1996) Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound. Chem Phys Lett 254:103–108

    CAS  Google Scholar 

  39. Matsushima T, Fujita K, Tsutsui (2005) Electroluminescence enhancement in dry-processed organic-inorganic layered perovskite films. Jpn J Appl. Phys 44:1457–1461

    Google Scholar 

  40. Era M, Morimoto S, Tsutsui T et al (1994) Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl Phys Lett 65:676–678

    CAS  Google Scholar 

  41. Koutselas I, Bampoulis P, Maratou E et al (2011) Some unconventional organic-inorganic hybrid low-dimensional semiconductors and related light-emitting devices. J Phys Chem C 115:8475–8483

    CAS  Google Scholar 

  42. Sutherland BR, Sargent EH (2016) Perovskite photonic sources. Nat Photonics 10:295–302

    CAS  Google Scholar 

  43. Gebauer T, Schmid G (1999) Inorganic-organic hybrid structured LED’s. Z Anorg Allg Chem 625:1124–1128

    CAS  Google Scholar 

  44. Liang D, Peng Y, Fu Y et al (2016) Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 10:6897–6904

    CAS  Google Scholar 

  45. Adjokatse S, Fang H-H, Loi MA (2017) Broadly tunable metal halide perovskites for solid-state light-emission applications. Mater Today 20:413–424

    Google Scholar 

  46. Tan ZK, Moghaddam RS, Lai ML et al (2014) Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 9:687–692

    CAS  Google Scholar 

  47. Vassilakopoulou A, Papadatos D, Koutselas I (2016) Room temperature light emitting diode based on 2D hybrid organic-inorganic low dimensional perovskite semiconductor. Appl Mater Today 5:128–133

    Google Scholar 

  48. Ma D, He Y (2017) Syntheses of needle-shaped layered perovskite (C6H5CH2NH3)2PbI4 bundles via a two-step processing technique. J Alloy Compd 696:1213–1219

    CAS  Google Scholar 

  49. Seo Y-H, Kim E-C, Cho S-P, Kim S-S, Na S-I (2017) High-performance planar perovskite solar cells: influence of solvent upon performance. Appl Mater Today 9:598–604

    Google Scholar 

  50. Qin X, Dong H, Hu W (2015) Green light-emitting diode from bromine based organic-inorganic halide perovskite. Sci China Mater 58:186–191

    CAS  Google Scholar 

  51. Stranks SD, Burlakov VM, Leijtens T et al (2014) Recombination kinetics in organic–inorganic perovskites: excitons, free charge, and subgap states. Phys Rev Appl 2:034007

    Google Scholar 

  52. Tsai H, Nie W, Blancon J-C et al (2018) Stable light-emitting diodes using phase-pure ruddlesden-popper layered perovskites. Adv Mater 30:1704217

    Google Scholar 

  53. Vareli I, Vassilakopoulou A, Koutselas I (2018) Defect variants based on the 2D hybrid organic-inorganic low-dimensional semiconductor (4-Fluoro-Phenethylamine-H)2PbBr4 for fabrication of single-layer deep blue LEDs. ACS Appl Nano Mater 1:2129–2142

    CAS  Google Scholar 

  54. Wang Q, Ren J, Peng X et al (2017) Efficient sky-blue perovskite light emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl Mater Interfaces 9:29901–29906

    CAS  Google Scholar 

  55. Hoye RLZ, Chua MR, Musselman KP et al (2015) Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors. Adv Mater 27:1414–1419

    CAS  Google Scholar 

  56. Gong X, Voznyy O, Ankit Jain A et al (2018) Electron–phonon interaction in efficient perovskite blue emitters. Nat Mater 17:550–556

    CAS  Google Scholar 

  57. Xing J, Yan F, Zhao Y et al (2016) High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano 10:6623–6630

    CAS  Google Scholar 

  58. Bi D, Gao P, Scopelliti R et al (2016) High-performance perovskite solar cells with enhanced environmental stability based on amphiphile-modified CH3NH3PbI3. Adv Mater 28:2910–2915

    CAS  Google Scholar 

  59. Jaffe A, Lin Y, Beavers CM et al (2016) High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent. Sci. 2:201–209

    CAS  Google Scholar 

  60. Ha S-T, Shen C et al (2016) Laser cooling of organic–inorganic lead halide perovskites. Nat Photonics 10:115–121

    CAS  Google Scholar 

  61. Yang Y, Ostrowski DP, France RM et al (2016) Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat Photonics 10:53–59

    CAS  Google Scholar 

  62. Li R, Yi C, Ge R et al (2016) Room-temperature electroluminescence from two-dimensional lead halide perovskites. Appl Phys Lett 109:151101

    Google Scholar 

  63. Yuanb Z, Shu Y, Xin Y et al (2016) Highly luminescent nanoscale quasi-2D layered lead bromide perovskites with tunable emissions. Chem Commun 52:3887–3890

    Google Scholar 

  64. Zhao B, Bai S, Kim V et al (2018) High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. arxiv:1804.09785

    Google Scholar 

  65. Kondo S, Kakuchi M, Masaki AM et al (2003) Strongly enhanced free-exciton luminescence in microcrystalline CsPbBr3 films. J Phys Soc Jpn 72:1789–1791

    CAS  Google Scholar 

  66. Papavassiliou GC, Mousdis GA, Anyfantis GA (2010) Organic-inorganic hybrid compounds based on lead halide units: preparation from melts and through grinding effects. Luminescence 25:218–219

    Google Scholar 

  67. Yoon H-C, Kang H, Lee S et al (2016) Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Appl Mater Interfaces 8:18189–18200

    CAS  Google Scholar 

  68. Cho H, Jeong S-H, Park M-H et al (2015) Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350:1222–1225

    CAS  Google Scholar 

  69. Koutselas I, Dimos K, Bourlinos A et al (2008) Synthesis and characterization of PbI2 semiconductor quantum wires within layered solids. J Optoectron Adv Mater 10:58–65

    CAS  Google Scholar 

  70. Vassilakopoulou A, Papadatos D, Koutselas IB (2017) Light emitting diodes based on blends of quasi-2D lead halide perovskites stabilized within mesoporous silica matrix. Micr Mesopor Mat 249:165–175

    CAS  Google Scholar 

  71. Dirin DN, Protesescu L, Trummer D et al (2016) Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrices. Nano Lett 16:5866–5874

    CAS  Google Scholar 

  72. Zou Y, Ban M, Yang Y et al (2018) Boosting perovskite light-emitting-diodes performance via tailoring interfacial contact. ACS Appl Mater Interfaces 10(28):24320–24326

    Google Scholar 

  73. Zhao B, Bai S, Kim V et al (2018) High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat Photon 12:783–789

    Google Scholar 

  74. Tian Y, Zhou C, Worku M et al (2018) Highly efficient spectrally stable red perovskite light emitting diodes. Adv Mater 30:1707093

    Google Scholar 

  75. Tan Y, Zou Y, Wu L et al (2018) Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes. ACS Appl Mater Interfaces 10:3784–3792

    CAS  Google Scholar 

  76. Era M, Komatsu Y, Sakamoto N (2016) Enhancement of exciton emission in lead halide-based layered perovskites by cation mixing. J Nanosci Nanotechnol 16:3338–3342

    CAS  Google Scholar 

  77. Vassilakopoulou A, Papadatos D, Koutselas IB (2018) Polystyrene based perovskite light emitting diode. App Mat Today 12:15–20

    Google Scholar 

  78. Xing G, Mathews N, Lim SS et al (2014) Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater 13:476–480

    CAS  Google Scholar 

  79. Kondo T, Azuma T, Yuasa et al (1998) Biexciton lasing in the layered perovskite-type material (C6H13NH3)2Pb14. Solid State Commun 105:253–255

    Google Scholar 

  80. Zhu H, Fu Y, Meng F et al (2015) Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater 14:636–642

    CAS  Google Scholar 

  81. Sasaki F, Mochizuki H, Zhou Y et al Optical pumped lasing in solution processed perovskite semiconducting materials: Self-assembled microdisk lasing. Jpn J Appl Phys 55:04ES02

    Google Scholar 

  82. Nguyen V-C, Katsuki H, Sasaki F et al (2016) Optically pumped lasing in single crystals of organometal halide perovskites prepared by cast-capping method. Appl Phys Lett 108:261105

    Google Scholar 

  83. Sasaki F, Zhou Y, Sonoda Y et al (2017) Optically pumped lasing in solution-processed perovskite semiconducting materials: Self-assembled Fabry–Pérot microcavity. Jpn J Appl Phys 56:04CL07

    Google Scholar 

  84. Brenner P, Glöckler T, Rueda-Delgado D et al (2017) Triple cation mixed-halide perovskites for tunable lasers. Opt Mater Express 7:4082–4094

    CAS  Google Scholar 

  85. Saliba M, Wood SM, Patel JB et al (2016) Structured organic-inorganic perovskite toward a distributed feedback laser. Adv Mater 28:923–929

    CAS  Google Scholar 

  86. Gong J, Wang Y, Liu S et al (2017) All-inorganic perovskite- based distributed feedback resonator. Opt Express 25:A1154–A1161

    CAS  Google Scholar 

  87. Leyden MR, Matsushima T, Qin C et al (2018) Amplified spontaneous emission in phenylethylammonium methylammonium lead iodide quasi-2D perovskites. Phys Chem Chem Phys 2018:15030–15036

    Google Scholar 

  88. Li M, Gao Q, Liu P et al (2018) Amplified spontaneous emission based on 2D ruddlesden-popper perovskites. Adv Funct Mater 2018:1707006

    Google Scholar 

  89. Yakunin S, Protesescu L, Krieg F et al (2015) Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun 6:8056

    CAS  Google Scholar 

  90. Koutselas IB, Ducasse L, Papavassiliou GC (1995) Electronic properties of three- and low-dimensional semiconducting materials with Pb halide and Sn halide units. J Phys Condens Matter 8:1217–1227

    Google Scholar 

  91. Papavassiliou GC, Koutselas IB, Mousdis GA, Papaioannou GJ (2002) Some organic-inorganic hybrid semiconductors obtained from melts. In: Graja A, Bulka B R, Kajzar F (eds) Molecular low dimensional and nano-structured materials for advanced applications, vol 59. Springer, Dordrecht, pp 319–322

    Google Scholar 

  92. Papavassiliou GC, Mousdis GA, Anyfantis GC (2010) Organic-inorganic hybrid compounds based on lead halide units: preparation from melts and through grinding effects. Z. Naturforsch. 65b:516–520

    Google Scholar 

  93. Ogawa T, Kanemitsu Y (eds) (1998) Optical properties of low-dimensional materials. World Scientific

    Google Scholar 

  94. Ishihara T, Hirasawa M, Goto T (1995) Optical properties and electronic structures of self-organized quantum well (CnH2n+1NH3)2PbX4 (X = I, Br, Cl). Jpn J Appl Phys 34:71

    CAS  Google Scholar 

  95. Koutselas IB, Mitzi DB, Papavassiliou GC et al (1997) Optical and related properties of natural one-dimensional semiconductors based on PbI and SnI units. Synth Metals 86:2171–2172

    CAS  Google Scholar 

  96. Matsuishi K, Suzuki T et al (2001) Excitonic states of layered perovskite semiconductors. Phys Status Solidi 223:177–182

    CAS  Google Scholar 

  97. Fukumoto T, Hirasawa M, Ishihara T (2000) Two-photon absorption and hydrostatic pressure effects on exciton states in one-dimensional crystal C5H10NH2PbI3. J Lumin 87–89:497–499

    Google Scholar 

  98. Matsuishi K, Ishihara T, Onari S et al (2004) Optical properties and structural phase transitions of lead‐halide based inorganic–organic 3D and 2D perovskite semiconductors under high pressure. Phys Status Solidi 241:3328–3333

    Google Scholar 

  99. Wei H, Fang Y, Mulligan P et al (2016) Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat Photonics 10:333–339

    CAS  Google Scholar 

  100. Yakunin S, Sytnyk M, Kriegner D et al (2015) Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photonics 9:444–449

    CAS  Google Scholar 

  101. Hu X, Zhang X, Liang L et al (2014) High-performance flexible broadband photodetector based on organolead halide perovskite. Adv Funct Mater 24:7373–7380

    CAS  Google Scholar 

  102. Nikolaou P, Vassilakopoulou A, Papadatos D et al (2018) A chemical sensor for CBr4 based on quasi-2D and 3D hybrid organic-inorganic perovskites immobilized on TiO2 films. Mater Chem Front 2:730–740

    CAS  Google Scholar 

  103. Laquindanum JG, Katz HE, Dodabalapur A et al (1996) n-Channel organic transistor materials based on naphthalene frameworks. J Am Chem Soc 118:11331–11332

    CAS  Google Scholar 

  104. Hamedi M, Forchheimer R, Inganäs O (2007) Towards woven logic from organic electronic fibres. Nat Mater 6:357–362

    CAS  Google Scholar 

  105. Ward JW, Smith HL, Zeidell A et al (2017) Solution-processed organic and halide perovskite transistors on hydrophobic surfaces. ACS Appl Mater Interfaces 9:18120

    CAS  Google Scholar 

  106. Kagan C, Mitzi D, Dimitrakopoulos C (1999) Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286:945–947

    CAS  Google Scholar 

  107. Mitzi DB, Dimitrakopoulos CD, Kosbar LL (2001) Structurally tailored organic-inorganic perovskites: optical properties and solution-processed channel materials for thin-film transistors. Chem Mater 13:3728–3740

    CAS  Google Scholar 

  108. Chin XY, Cortecchia D, Yin J et al (2015) Lead iodide perovskite light-emitting field-effect transistor. Nat Commun 6:7383

    CAS  Google Scholar 

  109. Li F, Ma C, Wang H et al (2015) Ambipolar solution-processed hybrid perovskite phototransistors. Nat Commun 6:8238

    Google Scholar 

  110. Senanayak SP, Yang B, Thomas TH et al (2017) Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci Adv 3:e1601935

    Google Scholar 

  111. Li D, Cheng H-C, Wang Y et al (2017) The effect of thermal annealing on charge transport in organolead halide perovskite microplate field-effect transistors. Adv Mater 29:1601959

    Google Scholar 

  112. Conings B, Drijkoningen J, Gauquelin N et al (2015) Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater 5:1500477

    Google Scholar 

  113. Xia H-R, Sun W-T, Peng L-M (2015) Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries. Chem Comm 51:13787–13790

    Google Scholar 

  114. Zhang W, Eperon GE, Snaith HJ (2016) Metal halide perovskites for energy applications. Nat Energy 1:16048

    CAS  Google Scholar 

  115. Song M-K, Park S, Alamgir FM, Cho J et al (2011) Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater Sci Eng 72:203–252

    Google Scholar 

  116. Vicente N, Belmonte GG (2017) Methylammonium lead bromide perovskite battery anodes reversibly host high Li-ion concentrations. J Phys Chem Lett 8:1371–1374

    CAS  Google Scholar 

  117. Mathies F, Brenner P, Hernandez-Sosa G et al (2018) Inkjet-printed perovskite distributed feedback lasers. Opt Express 26:A144–A152

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Vassilakopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vassilakopoulou, A., Koutselas, I. (2020). LEDs and Other Electronic Devices Based on Perovskite Materials. In: Arul, N., Nithya, V. (eds) Revolution of Perovskite. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-1267-4_10

Download citation

Publish with us

Policies and ethics