Skip to main content

Life Cycle Assessment of Chitosan

  • Chapter
  • First Online:
Advances in Sustainable Polymers

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Life cycle assessment (LCA) is a standardized practice to assess the life cycle of a product for regulating the environmental impacts of a product life. LCA is a significant entity to maintain the quality and ecological integrity for determining the optimal product and processes in terms of their novel growths. The chapter aims to discuss the LCA of chitosan-based materials with strategies to control the impacts on environment. Chitosan is the second most abundantly available polysaccharides, which are widely used for its biodegradable, biocompatible, non-toxic, and antimicrobial nature and several other properties. The deacetylation of chitin yields chitosan, which can be tailored in different forms and geometry to achieve an extensive demand in the form of powders, films, tablets, particles, composites, etc. Further, the development of chitosan-based active materials having enormous properties can potentially replace the fossil-based materials for stringent food packaging applications, tissue engineering, drug delivery, therapeutics, adhesives, etc. The presence of functional groups such as primary amine and primary and secondary hydroxyl groups in chitosan provides an opportunity for regulating its properties in terms of formulating functional agents. In addition, chitosan can form cross-links and multi-networks through the presence of functional groups, pH, electro response, etc., which may be desired for developing materials with tuned properties. In this context, an understanding regarding the environmental impact of chitosan during its whole life cycle is needed. In this chapter, the discussion on LCA of chitosan and related approaches from available resources for tailor-made properties is made including various design parameters, environmental impacts, product formulation steps, use of different agents, and so on. Additionally, the chapter presents the importance of chitosan in day-to-day life along with its environmental impact for various applications such as food packaging films, edible coatings, flocculants, adhesives, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kloepffer W (2008) Life cycle sustainability assessment of products. Int J Life Cycle Assess 13:89–95. https://doi.org/10.1065/lca2008.02.376

    Article  Google Scholar 

  2. Groot WJ, Borén T (2010) Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand. Int J Life Cycle Assess 15:970–984. https://doi.org/10.1007/s11367-010-0225-y

    Article  CAS  Google Scholar 

  3. Shen L, Patel MK (2010) Life cycle assessment of man-made cellulose fibres. Lenzinger Ber 88:1–59

    CAS  Google Scholar 

  4. Norris GA (2001) Integrating life cycle cost analysis and LCA. Int J Life Cycle Assess 6:118–120. https://doi.org/10.1007/BF02977849

    Article  Google Scholar 

  5. Scientific Applications International Corporation (SAIC), Curran MA (2006) Life-cycle assessment: principles and practice. Cincinnati, Ohio. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency, pp 1–18

    Google Scholar 

  6. Hunt RG, Sellers JD, Franklin WE (1992) Resource and environmental profile analysis: a life cycle environmental assessment for products and procedures. Environ Impact Assess Rev 12:245–269. https://doi.org/10.1016/0195-9255(92)90020-X

    Article  Google Scholar 

  7. Martínez-Blanco J, Lehmann A, Muñoz P, Antón A, Traverso M, Rieradevall J, Finkbeiner M (2014) Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. J Clean Prod 69:34–48. https://doi.org/10.1016/j.jclepro.2014.01.044

    Article  Google Scholar 

  8. Finkbeiner M, Inaba A, Tan R, Christiansen K, Klüppel HJ (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess 11:80–85. https://doi.org/10.1065/lca2006.02.002

    Article  Google Scholar 

  9. Finkbeiner M (2009) Carbon footprinting—opportunities and threats. Int J Life Cycle Assess 14:91–94. https://doi.org/10.1007/s11367-009-0064-x

    Article  Google Scholar 

  10. Sinden G (2009) The contribution of PAS 2050 to the evolution of international greenhouse gas emission standards. Int J Life Cycle Assess 14:195–203. https://doi.org/10.1007/s11367-009-0079-3

    Article  CAS  Google Scholar 

  11. ISO (2016) Environmental management—life cycle assessment-principles and framework. ISO 14040:2006

    Google Scholar 

  12. ISO (2016) Environmental management—life cycle assessment-requirements and guidelines. ISO 14044:2006

    Google Scholar 

  13. Liu G, Müller DB (2012) Addressing sustainability in the aluminum industry: a critical review of life cycle assessments. J Clean Prod 35:108–117. https://doi.org/10.1016/j.jclepro.2012.05.030

    Article  Google Scholar 

  14. Braungart M, McDonough W, Bollinger A (2007) Cradle-to-cradle design: creating healthy emissions–a strategy for eco-effective product and system design. J Clean Prod 15:1337–1348. https://doi.org/10.1016/j.jclepro.2006.08.003

    Article  Google Scholar 

  15. Borkotoky SS, Ghosh T, Bhagabati P, Katiyar V (2018) Poly (lactic acid)/modified gum arabic (MG) based microcellular composite foam: Effect of MG on foam properties, thermal and crystallization behavior. Int J Biol Macromol 125:159–170. https://doi.org/10.1016/j.ijbiomac.2018.11.257

    Article  CAS  Google Scholar 

  16. Ghosh T, Katiyar V (2018) Cellulose-based hydrogel films for food packaging. In: Mondal M (eds) Cellulose-based superabsorbent hydrogels. polymers and polymeric composites: a reference series. Springer, Cham, pp 1–25. https://doi.org/10.1007/978-3-319-76573-0_35-1

  17. Fredriksson H, Silverio J, Andersson R, Eliasson AC, Åman P (1998) The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr Polym 35:119–134. https://doi.org/10.1016/S0144-8617(97)00247-6

    Article  CAS  Google Scholar 

  18. Miles MJ, Morris VJ, Orford PD, Ring SG (1985) The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr Res 135:271–281. https://doi.org/10.1016/S0008-6215(00)90778-X

    Article  CAS  Google Scholar 

  19. Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Polymer Rev 44:231–274. https://doi.org/10.1081/MC-200029326

    Article  CAS  Google Scholar 

  20. Parra DF, Tadini CC, Ponce P, Lugão AB (2004) Mechanical properties and water vapor transmission in some blends of cassava starch edible films. Carbohydr Polym 58:475–481. https://doi.org/10.1016/j.carbpol.2004.08.021

    Article  CAS  Google Scholar 

  21. García MA, Pinotti A, Martino MN, Zaritzky NE (2009) Characterization of starch and composite edible films and coatings. In: Huber K, Embuscado M (eds) Edible films and coatings for food applications. Springer, New York, NY, pp 169–209. https://doi.org/10.1007/978-0-387-92824-1_6

  22. Carr LG, Parra DF, Ponce P, Lugao AB, Buchler PM (2006) Influence of fibers on the mechanical properties of cassava starch foams. J Polym Environ 14:179–183. https://doi.org/10.1007/s10924-006-0008-5

    Article  CAS  Google Scholar 

  23. Zawadzki KM, Yaspelkis BB 3rd, Ivy JL (1992) Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise. J Appl Physiol 72:1854–1859. https://doi.org/10.1152/jappl.1992.72.5.1854

    Article  CAS  Google Scholar 

  24. Rosai J, Lascano EF (1970) Basophilic (mucoid) degeneration of myocardium: a disorder of glycogen metabolism. Am J Pathol 61:99–116

    CAS  Google Scholar 

  25. Chou J, Matern D, Mansfield BC, Chen YT (2002) Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Cur Mol Med 2:121–143. https://doi.org/10.2174/1566524024605798

    Article  CAS  Google Scholar 

  26. Greene HL, Wilson FA, Hefferan P, Terry AB, Moran JR, Slonim AE, Burr IM (1978) ATP depletion, a possible role in the pathogenesis of hyperuricemia in glycogen storage disease type I. J Clin Invest 62:321–328. https://doi.org/10.1172/JCI109132

    Article  CAS  Google Scholar 

  27. O’sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207. https://doi.org/10.1023/A:1018431705579

    Article  Google Scholar 

  28. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159. https://doi.org/10.1007/s10570-007-9145-9

    Article  CAS  Google Scholar 

  29. Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93. https://doi.org/10.1016/j.carbpol.2003.08.005

    Article  CAS  Google Scholar 

  30. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174. https://doi.org/10.3390/md13031133

    Article  CAS  Google Scholar 

  31. Paoletti MG, Norberto L, Damini R, Musumeci S (2007) Human gastric juice contains chitinase that can degrade chitin. Ann Nutr Metab 51:244–251. https://doi.org/10.1159/000104144

    Article  CAS  Google Scholar 

  32. Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. Microbiology 134:169–176. https://doi.org/10.1099/00221287-134-1-169

    Article  CAS  Google Scholar 

  33. May CD (1990) Industrial pectins: sources, production and applications. Carbohydr Polym 12:79–99. https://doi.org/10.1016/0144-8617(90)90105-2

    Article  CAS  Google Scholar 

  34. Munarin F, Tanzi MC, Petrini P (2012) Advances in biomedical applications of pectin gels. Int J Biol Macromol 51:681–689. https://doi.org/10.1016/j.ijbiomac.2012.07.002

    Article  CAS  Google Scholar 

  35. Kopjar M, Pilizota V, Tiban NN, Subaric D, Babic J, Ackar D, Sajdl M (2009) Strawberry jams: influence of different pectins on colour and textural properties. Czech J Food Sci 27:20–28

    Article  CAS  Google Scholar 

  36. Apsara M, Pushpalatha PB (2002) Quality upgradation of jellies prepared using pectin extracted from fruit wastes. J Trop Agric 40:31–34

    Google Scholar 

  37. Alishahi A, Aïder M (2012) Applications of chitosan in the seafood industry and aquaculture: a review. Food Bioprocess Technol 5:817–830. https://doi.org/10.1007/s11947-011-0664-x

    Article  CAS  Google Scholar 

  38. Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51. https://doi.org/10.1016/S0924-2244(99)00017-5

    Article  CAS  Google Scholar 

  39. Karthik N, Akanksha K, Binod P, Pandey A (2014) Production, purification and properties of fungal chitinases—a review. http://hdl.handle.net/123456789/29743

  40. Van der Lubben IM, Verhoef JC, Borchard G, Junginger HE (2001) Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 14:201–207. https://doi.org/10.1016/S0928-0987(01)00172-5

    Article  Google Scholar 

  41. Hoppe-Seyler F (1894) Ueber chitin und cellulose. Ber Dtsch Chem Ges 27:3329–3331. https://doi.org/10.1002/cber.189402703135

    Article  CAS  Google Scholar 

  42. Kumar Pal A, Das A, Katiyar V (2016) Chitosan from Muga silkworms (Antheraea assamensis) and its influence on thermal degradation behaviour of poly (lactic acid) based biocomposite films. J Appl Polym Sci, vol 133. https://doi.org/10.1002/app.43710

  43. Pal AK, Katiyar V (2017) Thermal degradation behaviour of nanoamphiphilic chitosan dispersed poly (lactic acid) bionanocomposite films. Int J Biol Macromol 95:1267–1279. https://doi.org/10.1016/j.ijbiomac.2016.11.024

    Article  CAS  Google Scholar 

  44. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotech 8:203–226. https://doi.org/10.1007/s10126-005-0097-5

    Article  CAS  Google Scholar 

  45. Ugraskan V, Toraman A, Yoruç ABH (2018) Chitosan: structure, properties and applications. Chitosan-Based Adsorbents Wastewater Treat 34:1–28

    Article  CAS  Google Scholar 

  46. Palpandi C, Shanmugam V, Shanmugam A (2009) Extraction of chitin and chitosan from shell and operculum of mangrove gastropod Nerita (Dostia) crepidularia Lamarck. Int J Med Sci 1:198–205

    CAS  Google Scholar 

  47. Wysokińska Z (2010) Market for starch, hemicellulose, cellulose, alginate, its salts and esters, and natural polymers, including chitin and chitosan: analysis results. Fibres Text East Eur 18:83

    Google Scholar 

  48. de Queiroz Antonino RSCM, Lia Fook BRP, de Oliveira Lima VA, de Farias Rached RÍ, Lima EPN, da Silva Lima RJ, Lia Fook MV (2017) Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs 15:141. https://doi.org/10.3390/md15050141

    Article  CAS  Google Scholar 

  49. Arbia W, Arbia L, Adour L, Amrane A (2013) Chitin extraction from crustacean shells using biological methods–a review. Food Technol Biotech 51:12–25. https://hrcak.srce.hr/99743

  50. Yen MT, Yang JH, Mau JL (2008) Antioxidant properties of chitosan from crab shells. Carbohydr Polym 74:840–844. https://doi.org/10.1016/j.carbpol.2008.05.003

    Article  CAS  Google Scholar 

  51. Yen MT, Tseng YH, Li RC, Mau JL (2007) Antioxidant properties of fungal chitosan from shiitake stipes. LWT-Food Sci Technol 40:255–261. https://doi.org/10.1016/j.lwt.2005.08.006

    Article  CAS  Google Scholar 

  52. No HK, Park NY, Lee SH, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65–72. https://doi.org/10.1016/S0168-1605(01)00717-6

    Article  CAS  Google Scholar 

  53. Jo HG, Min KH, Nam TH, Na SJ, Park JH, Jeong SY (2008) Prolonged antidiabetic effect of zinc-crystallized insulin loaded glycol chitosan nanoparticles in type 1 diabetic rats. Arch Pharmacal Res 31:918–923. https://doi.org/10.1007/s12272-001-1247-9

    Article  CAS  Google Scholar 

  54. Kerch G (2015) The potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Mar Drugs 13:2158–2182. https://doi.org/10.3390/md13042158

    Article  CAS  Google Scholar 

  55. Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng, C 33:1819–1841. https://doi.org/10.1016/j.msec.2013.01.010

    Article  CAS  Google Scholar 

  56. Wang SY, Gao H (2013) Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT-Food Sci Technol 52:71–79. https://doi.org/10.1016/j.lwt.2012.05.003

    Article  CAS  Google Scholar 

  57. Arnon H, Zaitsev Y, Porat R, Poverenov E (2014) Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biol Tech 87:21–26. https://doi.org/10.1016/j.postharvbio.2013.08.007

    Article  CAS  Google Scholar 

  58. Pereira VA Jr, de Arruda INQ, Stefani R (2015) Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as time–temperature indicators for application in intelligent food packaging. Food Hydrocoll 43:180–188. https://doi.org/10.1016/j.foodhyd.2014.05.014

    Article  CAS  Google Scholar 

  59. Lauto A, Hook J, Doran M, Camacho F, Poole-Warren LA, Avolio A, Foster LJR (2005) Chitosan adhesive for laser tissue repair: in vitro characterization. Laser Surg Med 36:193–201. https://doi.org/10.1002/lsm.20145

    Article  Google Scholar 

  60. Yamada K, Chen T, Kumar G, Vesnovsky O, Topoleski LT, Payne GF (2000) Chitosan based water-resistant adhesive. Analogy to mussel glue. Biomacromolecules 1:252–258. https://doi.org/10.1021/bm0003009

    Article  CAS  Google Scholar 

  61. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99. https://doi.org/10.1016/j.addr.2009.07.019

    Article  CAS  Google Scholar 

  62. Yang C, Xu L, Zhou Y, Zhang X, Huang X, Wang M, Li J (2010) A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydr Polym 82:1297–1305. https://doi.org/10.1016/j.carbpol.2010.07.013

    Article  CAS  Google Scholar 

  63. Patel AK, Michaud P, Petit E, de Baynast H, Grédiac M, Mathias JD (2013) Development of a chitosan-based adhesive. Application to wood bonding. J Appl Polym Sci 127:5014–5021. https://doi.org/10.1002/app.38097

    Article  CAS  Google Scholar 

  64. Wang Y, Guo KQ, Li JN, Duan XF, Li YJ (2009) Konjac glucomannan/chitosan based adhesive for plywood production. China Wood Industry 23(2):13–15

    CAS  Google Scholar 

  65. Muñoz I, Rodríguez C, Gillet D, Moerschbacher BM (2017) Life cycle assessment of chitosan production in India and Europe. Int J Life Cycle Assess, pp 1–10. https://doi.org/10.1007/s11367-017-1290-2

  66. Orrego CE, Salgado N (2014) Green logistics in chitin/chitosan industry. Appl Agroindustries 1400000:1200000

    Google Scholar 

  67. Ghosh T, Dash KK (2018) Respiration rate model and modified atmosphere packaging of bhimkol banana. Eng Agric Environ Food 11:186–195. https://doi.org/10.1016/j.eaef.2018.04.004

    Article  Google Scholar 

  68. Leceta I, Guerrero P, Cabezudo S, de la Caba K (2013) Environmental assessment of chitosan-based films. J Clean Prod 41:312–318. https://doi.org/10.1016/j.jclepro.2012.09.049

    Article  CAS  Google Scholar 

  69. Madival S, Auras R, Singh SP, Narayan R (2009) Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology. J Clean Prod 17:1183–1194. https://doi.org/10.1016/j.jclepro.2009.03.015

    Article  CAS  Google Scholar 

  70. Suwanmanee S, Lertworasirikul, S (2015) Environmental impact assessment of coating fresh-cut papaya Cv. Holland with chitosan. In: Proceedings of 35th the IIER international conference, Bangkok, Thailand. ISBN 978-93-85465-89-5

    Google Scholar 

  71. Mati-Baouche N, Elchinger PH, De Baynast H, Pierre G, Delattre C, Michaud P (2014) Chitosan as an adhesive. Eur Polym J 60:198–212. https://doi.org/10.1016/j.eurpolymj.2014.09.008

    Article  CAS  Google Scholar 

  72. Beach ES, Eckelman MJ, Cui Z, Brentner L, Zimmerman JB (2012) Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans. Bioresour Technol 121:445–449. https://doi.org/10.1016/j.biortech.2012.06.012

    Article  CAS  Google Scholar 

  73. Yan N, Chen X (2015) Don’t waste seafood waste: turning cast-off shells into nitrogen-rich chemicals would benefit economies and the environment. Nature 524:155–158

    Article  CAS  Google Scholar 

  74. Balakrishnan M, Batra VS, Hargreaves JSJ, Pulford ID (2011) Waste materials–catalytic opportunities: an overview of the application of large scale waste materials as resources for catalytic applications. Green Chem 13:16–24. https://doi.org/10.1039/C0GC00685H

    Article  CAS  Google Scholar 

  75. Cárdenas G, Cabrera G, Taboada E, Miranda SP (2004) Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. J Appl Polym Sci 93:1876–1885. https://doi.org/10.1002/app.20647

    Article  CAS  Google Scholar 

  76. Islam MS, Khan S, Tanaka M (2004) Waste loading in shrimp and fish processing effluents: potential source of hazards to the coastal and nearshore environments. Marine Poll Bull 49:103–110. https://doi.org/10.1016/j.marpolbul.2004.01.018

    Article  CAS  Google Scholar 

  77. Shahidi F, Synowiecki J (1991) Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J Agric Food Chem 39:1527–1532. https://doi.org/10.1021/jf00008a032

    Article  CAS  Google Scholar 

  78. Rødde RH, Einbu A, Vårum KM (2008) A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydr Polym 71:388–393. https://doi.org/10.1016/j.carbpol.2007.06.006

    Article  CAS  Google Scholar 

  79. Gao X, Chen X, Zhang J, Guo W, Jin F, Yan N (2016) Transformation of chitin and waste shrimp shells into acetic acid and pyrrole. ACS Sustain Chem Eng 4:3912–3920. https://doi.org/10.1021/acssuschemeng.6b00767

    Article  CAS  Google Scholar 

  80. Suresh PV, Chandrasekaran M (1998) Utilization of prawn waste for chitinase production by the marine fungus Beauveria bassiana by solid state fermentation. World J Microbiol Biotechnol 14:655–660. https://doi.org/10.1023/A:1008844516915

    Article  CAS  Google Scholar 

  81. Wu T, Zivanovic S, Draughon FA, Sams CE (2004) Chitin and chitosan value-added products from mushroom waste. J Agric Food Chem 52:7905–7910. https://doi.org/10.1021/jf0492565

    Article  CAS  Google Scholar 

  82. Yoon HJ, Moon ME, Park HS, Im SY, Kim YH (2007) Chitosan oligosaccharide (COS) inhibits LPS-induced inflammatory effects in RAW 264.7 macrophage cells. Biochem Biophys Res Commun 358:954–959. https://doi.org/10.1016/j.bbrc.2007.05.042

    Article  CAS  Google Scholar 

  83. Yang EJ, Kim JG, Kim JY, Kim SC, Lee NH, Hyun CG (2010) Anti-inflammatory effect of chitosan oligosaccharides in RAW 264.7 cells. Cent Eur J Biol 5:95–102. https://doi.org/10.2478/s11535-009-0066-5

    Article  CAS  Google Scholar 

  84. Chung MJ, Park JK, Park YI (2012) Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE–antigen complex-stimulated RBL-2H3 cells and asthma model mice. Int Immunopharmacol 12:453–459. https://doi.org/10.1016/j.intimp.2011.12.027

    Article  CAS  Google Scholar 

  85. Ylitalo R, Lehtinen S, Wuolijoki E, Ylitalo P, Lehtimäki T (2002) Cholesterol-lowering properties and safety of chitosan. Arzneimittelforschung 52:1–7. https://doi.org/10.1055/s-0031-1299848

    Article  CAS  Google Scholar 

  86. Ausar SF, Morcillo M, Leon AE, Ribotta PD, Masih R, Vilaro Mainero M, Beltramo DM (2003) Improvement of HDL-and LDL-cholesterol levels in diabetic subjects by feeding bread containing chitosan. J Med Food 6:397–399. https://doi.org/10.1089/109662003772519985

    Article  CAS  Google Scholar 

  87. Liu J, Lu JF, Kan J, Jin CH (2013) Synthesis of chitosan-gallic acid conjugate: structure characterization and in vitro anti-diabetic potential. Int J Biol Macromol 62:321–329. https://doi.org/10.1016/j.ijbiomac.2013.09.032

    Article  CAS  Google Scholar 

  88. Zhu W, Zhang Z (2014) Preparation and characterization of catechin-grafted chitosan with antioxidant and antidiabetic potential. Int J Biol Macromol 70:150–155. https://doi.org/10.1016/j.ijbiomac.2014.06.047

    Article  CAS  Google Scholar 

  89. Baez-Sañudo M, Siller-Cepeda J, Muy-Rangel D, Heredia JB (2009) Extending the shelf-life of bananas with 1-methylcyclopropene and a chitosan-based edible coating. J Sci Food Agric 89:2343–2349. https://doi.org/10.1002/jsfa.3715

    Article  CAS  Google Scholar 

  90. Günlü A, Koyun E (2013) Effects of vacuum packaging and wrapping with chitosan-based edible film on the extension of the shelf life of sea bass (Dicentrarchus labrax) fillets in cold storage (4 C). Food Bioprocess Technol 6:1713–1719. https://doi.org/10.1007/s11947-012-0833-6

    Article  CAS  Google Scholar 

  91. Altiok D, Altiok E, Tihminlioglu F (2010) Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. J Mater Sci Mater Med 21:2227–2236. https://doi.org/10.1007/s10856-010-4065-x

    Article  CAS  Google Scholar 

  92. Szyguła A, Guibal E, Palacín MA, Ruiz M, Sastre AM (2009) Removal of an anionic dye (Acid Blue 92) by coagulation–flocculation using chitosan. J Environ Manage 90:2979–2986. https://doi.org/10.1016/j.jenvman.2009.04.002

    Article  CAS  Google Scholar 

  93. Divakaran R, Pillai VS (2001) Flocculation of kaolinite suspensions in water by chitosan. Water Res 35:3904–3908. https://doi.org/10.1016/S0043-1354(01)00131-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Katiyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, T., Katiyar, V. (2020). Life Cycle Assessment of Chitosan. In: Katiyar, V., Kumar, A., Mulchandani, N. (eds) Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-1251-3_16

Download citation

Publish with us

Policies and ethics