Skip to main content

Mimicking Smart Textile by Fabricating Stereocomplex Poly(Lactic Acid) Nanocomposite Fibers

  • Chapter
  • First Online:
  • 822 Accesses

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

In the modern age, humans with their demanding nature along with comfort and fashion are also oriented toward flourishing functional textile products which have led researchers to focus toward the development of smart textiles. Scientists are now trying to introduce extraordinary properties like durable pressing performance, ultraviolet resistance, antistatic, antimicrobial and self-cleaning properties which are different from the conventional textiles. Most of the manmade fibers used in textile industry are petroleum-based which are depleting the natural resources and destructing the ecological balance at a constant rate. In this regard, the sustainable polymers for smart textiles would serve as promising candidates in solving the problem of discarding textiles. The current chapter therefore aims at providing insights about the utilization of biodegradable polymers in smart textiles. Among various biodegradable polymers, PLA has a great reputation in terms of its biodegradability, high mechanical performance and hydrophobicity. But the limitations of PLA fibers lie in its brittleness, degradation during home laundering and even storage condition. Thereby, this chapter includes the introduction of preferable and desirable approach like stereocomplexation in order to obtain a high heat stable stereocomplex PLA fiber for home laundering also. The fabrication of functional stereocomplex PLA fibers is possible by incorporating various bionanofillers which will be discussed in this chapter. Eventually, the application of such smart textile is also concerned toward the safety of human beings which will be very useful for academic and industrial use to cope up with the new concept of smart fabrics using biodegradable polymer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shahid-ul-Islam, Butola BS (2019) Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int J Biol Macromol 121:905–912. https://doi.org/10.1016/j.ijbiomac.2018.10.102

    Article  CAS  Google Scholar 

  2. Busi E, Maranghi S, Corsi L, Basosi R (2016) Environmental sustainability evaluation of innovative self-cleaning textiles. J Clean Prod 133:439–450. https://doi.org/10.1016/j.jclepro.2016.05.072

    Article  Google Scholar 

  3. Ahmed T, Shahid M, Azeem F, Rasul I, Shah AA, Noman M, Hameed A, Manzoor N, Manzoor I, Muhammad S (2018) Biodegradation of plastics: current scenario and future prospects for environmental safety. Environ Sci Pollut Res 25:7287–7298. https://doi.org/10.1007/s11356-018-1234-9

    Article  CAS  Google Scholar 

  4. Chemwiki UCD, Alike CCA, License US (2017) First-Order Reactions, 1–6

    Google Scholar 

  5. Walser T, Demou E, Lang DJ, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver T-shirts. Environ Sci Technol 45:4570–4578. https://doi.org/10.1021/es2001248

    Article  CAS  Google Scholar 

  6. Syduzzaman M, Patwary SU et al (2015) Smart textiles and nano-technology: a general overview. J Text Sci Eng 5. https://doi.org/10.4172/2165-8064.1000181

  7. Rivero PJ, Urrutia A, Goicoechea J, Arregui FJ (2015) Nanomaterials for functional textiles and fibers. Nanoscale Res Lett 10:1–22. https://doi.org/10.1186/s11671-015-1195-6

    Article  CAS  Google Scholar 

  8. Lin N, Huang J, Chang PR, Anderson DP, Yu J (2011) Preparation, modification, and application of starch nanocrystals in nanomaterials: a review. J Nanomater 2011. https://doi.org/10.1155/2011/573687

  9. Pérez S, Baldwin PM, Gallant DJ (2019) Structural features of starch granules I, 3rd edn. Elsevier Inc., Amsterdam

    Google Scholar 

  10. Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6:2807–2828. https://doi.org/10.1021/acssuschemeng.7b03437

    Article  CAS  Google Scholar 

  11. Lu Y, Cueva MC, Lara-Curzio E, Ozcan S (2015) Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization. Carbohydr Polym 131:208–217. https://doi.org/10.1016/j.carbpol.2015.05.047

    Article  CAS  Google Scholar 

  12. Dhar P, Kumar A, Katiyar V (2016) Magnetic cellulose nanocrystal based anisotropic polylactic acid nanocomposite films: influence on electrical, magnetic, thermal, and mechanical properties. ACS Appl Mater Interfaces 8:18393–18409. https://doi.org/10.1021/acsami.6b02828

    Article  CAS  Google Scholar 

  13. Dhar P, Tarafder D, Kumar A, Katiyar V (2015) Effect of cellulose nanocrystal polymorphs on mechanical, barrier and thermal properties of poly(lactic acid) based bionanocomposites. RSC Adv 5:60426–60440. https://doi.org/10.1039/c5ra06840a

    Article  CAS  Google Scholar 

  14. Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: processing optimization. Carbohydr Polym 77:656–661. https://doi.org/10.1016/j.carbpol.2009.02.008

    Article  CAS  Google Scholar 

  15. Koukaras EN, Papadimitriou SA, Bikiaris DN, Froudakis GE (2012) Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate. Mol Pharm 9:2856–2862. https://doi.org/10.1021/mp300162j

    Article  CAS  Google Scholar 

  16. Hebeish A, Sharaf S, Farouk A (2013) Utilization of chitosan nanoparticles as a green finish in multifunctionalization of cotton textile. Int J Biol Macromol 60:10–17. https://doi.org/10.1016/j.ijbiomac.2013.04.078

    Article  CAS  Google Scholar 

  17. Wang Y, Guo J, Zhou L, Ye C, Omenetto FG, Kaplan DL, Ling S (2018) Design, fabrication, and function of silk-based nanomaterials. Adv Funct Mater 1805305:1805305. https://doi.org/10.1002/adfm.201805305

    Article  CAS  Google Scholar 

  18. Patwa R, Soundararajan N, Mulchandani N, Bhasney SM, Shah M, Kumar S, Kumar A, Katiyar V (2018) Silk nano-discs : a natural material for cancer therapy. https://doi.org/10.1002/bip.23231

  19. Jae LJ, Yamane H (2010) Role of the stereocomplex crystallites in the PLLA/PDLA mixed spinning dope on the stereocomplex formation in the wet-spun fibers. Sen-I Gakkaishi 66:236–242

    Article  Google Scholar 

  20. Liu L, Yang X, Yu H, Ma C, Yao J (2014) Biomimicking the structure of silk fibers via cellulose nanocrystal as β-sheet crystallite. RSC Adv 4:14304–14313. https://doi.org/10.1039/c4ra01284d

    Article  CAS  Google Scholar 

  21. Patwa R, Soundararajan N, Mulchandani N, Bhasney SM, Shah M, Kumar S, Kumar A, Katiyar V (2018) Silk nano-discs: a natural material for cancer therapy. Biopolymers 109:e23231. https://doi.org/10.1002/bip.23231

    Article  CAS  Google Scholar 

  22. Ahmari H, Heris SZ, Khayyat MH (2018) The effect of titanium dioxide nanoparticles and UV irradiation on photocatalytic degradation of Imidaclopride, 3330. https://doi.org/10.1080/09593330.2017.1306115

  23. Gupta SM, Tripathi M (2012) A review on the synthesis of TiO2 nanoparticles by solution route, 10. https://doi.org/10.2478/s11532-011-0155-y

  24. Rosenthal SB (2016) Changing the wetting properties of titanium dioxide surfaces with visible and near infrared light, 155

    Google Scholar 

  25. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5–18. https://doi.org/10.1016/j.colsurfb.2010.03.029

    Article  CAS  Google Scholar 

  26. Li C, Zhang Y, Wang M, Zhang Y, Chen G, Li L, Wu D, Wang Q (2014) In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35:393–400. https://doi.org/10.1016/j.biomaterials.2013.10.010

    Article  CAS  Google Scholar 

  27. Gokarneshan N, Velumani K (2017) Application of nano silver particles on textile materials for improvement of antibacterial finishes, 2:1–4. https://doi.org/10.19080/gjn.2017.02.555586

  28. Mlynarčíková Z, Borsig E, Legéň J, Marcinčin A, Alexy P (2005) Influence of the composition of polypropylene/organoclay nanocomposite fibers on their tensile strength. J Macromol Sci A—Pure Appl Chem 42:543–554. https://doi.org/10.1081/ma-200056322

  29. Vijayakumar PS, Prasad BLV, Stewart NG, Kong H, Chi F, Lau N, Us CA, Ryan DJ, Pape HL, Solano-Serena F, Contini P, Devillers C, Maftah A, Lepape H, Solanoserena F, Leprat P, Myong NJ, Kawase et al, Kawase M, Kawase Y, Yamada K, Kobayashi K, Suzuki Y, Hutton IM, Holmes M, Chou SJ, Blucher HV, BioFriend, BIEDERMANN, Arnould, Ferrera, Andrea S, Jack T (2009) Handbook of nonwoven filter medium, 363. Carbon N Y 111111:11741–11747. https://doi.org/10.1021/la901024p

  30. Qufu W, Yu L, Ning W, Shanhu H (2008) Preparation and characterization of copper nanocomposite textiles. J Ind Text 37:275–283. https://doi.org/10.1177/1528083707083794

    Article  CAS  Google Scholar 

  31. Becheri A, Dürr M, Lo Nostro P, Baglioni P (2008) Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J Nanoparticle Res 10:679–689. https://doi.org/10.1007/s11051-007-9318-3

    Article  CAS  Google Scholar 

  32. Behnajady MA, Modirshahla N, Hamzavi R (2006) Kinetic study on photocatalytic degradation of C.I. acid yellow 23 by ZnO photocatalyst. J Hazard Mater 133:226–232. https://doi.org/10.1016/j.jhazmat.2005.10.022

    Article  CAS  Google Scholar 

  33. Xu B, Cai Z (2008) Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Appl Surf Sci 254:5899–5904. https://doi.org/10.1016/j.apsusc.2008.03.160

    Article  CAS  Google Scholar 

  34. El-Ola SMA (2008) Recent developments in finishing of synthetic fibers for medical applications. Des Monomers Polym 11:483–533. https://doi.org/10.1163/156855508X363816

    Article  CAS  Google Scholar 

  35. Wong YWH, Yuen CWM, Leung MYS, Ku SKA, Lam HLI (2006) Selected applications of nanotechnology in textiles. Autex Res J 6:1–8

    Google Scholar 

  36. Joshi M, Bhattacharyya A (2011) Nanotechnology—a new route to high-performance functional textiles. Text Prog 43:155–233. https://doi.org/10.1080/00405167.2011.570027

    Article  Google Scholar 

  37. Ki HY, Kim JH, Kwon SC, Jeong SH (2007) A study on multifunctional wool textiles treated with nano-sized silver. J Mater Sci 42:8020–8024. https://doi.org/10.1007/s10853-007-1572-3

    Article  CAS  Google Scholar 

  38. Liu Y, Tang J, Wang R, Lu H, Li L, Kong Y, Qi K, Xin JH (2007) Artificial lotus leaf structures from assembling carbon nanotubes and their applications in hydrophobic textiles. J Mater Chem 17:1071–1078. https://doi.org/10.1039/b613914k

    Article  CAS  Google Scholar 

  39. Dhineshbabu NR, Karunakaran G, Suriyaprabha R (2014) Electrospun MgO/nylon 6 hybrid nanofibers, 6:46–54

    Google Scholar 

  40. da Silva Paula MM, Franco CV, Baldin MC, Rodrigues L, Barichello T, Savi GD, Bellato LF, Fiori MA, da Silva L (2009) Synthesis, characterization and antibacterial activity studies of poly-{styrene-acrylic acid} with silver nanoparticles. Mater Sci Eng C 29:647–650. https://doi.org/10.1016/j.msec.2008.11.017

    Article  CAS  Google Scholar 

  41. Derakhshan SJ, Karimi L, Zohoori S, Davodiroknabadi A, Lessani L (2018) Antibacterial and self-cleaning properties of cotton fabric treated with TiO2/Pt, 43:344–351

    Google Scholar 

  42. Chapter 1 introduction (1991). Nord J Int Law 60:115–127. https://doi.org/10.1163/157181091x00278

  43. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004

    Article  CAS  Google Scholar 

  44. Ahmed J, Varshney SK (2011) Polylactides-chemistry, properties and green packaging technology: a review. Int J Food Prop 14:37–58. https://doi.org/10.1080/10942910903125284

    Article  CAS  Google Scholar 

  45. Blackburn RS (2005) Poly (lactic acid) fibers. Biodegradable Sustainable Fibres. https://doi.org/10.2115/fiber.59.p_329

  46. Cicero JA, Dorgan JR (2001) Physical properties and fiber morphology of poly(lactic acid) obtained from continuous two-step melt spinning. J Polym Environ 9:1–10. https://doi.org/10.1023/A:1016012818800

    Article  CAS  Google Scholar 

  47. Gao X-R, Niu B, Hua W-Q, Li Y, Xu L, Wang Y, Ji X, Zhong G-J, Li Z-M (2018) Rapid preparation and continuous processing of polylactide stereocomplex crystallite below its melting point. Polym Bull. https://doi.org/10.1007/s00289-018-2544-2

    Article  Google Scholar 

  48. Tu C, Cao X, Zhang R, Wang D, Cui L (2019) Effects of posttreatment on the properties of modified PLLA/PDLA fibers. Polym Adv Technol 1–10. https://doi.org/10.1002/pat.4460

  49. Mujica-Garcia A, Hooshmand S, Skrifvars M, Kenny JM, Oksman K, Peponi L (2016) Poly(lactic acid) melt-spun fibers reinforced with functionalized cellulose nanocrystals. RSC Adv 6:9221–9231. https://doi.org/10.1039/c5ra22818b

    Article  CAS  Google Scholar 

  50. Aouat T, Kaci M, Devaux E, Campagne C, Cayla A, Dumazert L, Lopez-Cuesta JM (2018) Morphological, mechanical, and thermal characterization of poly(lactic acid)/cellulose multifilament fibers prepared by melt spinning. Adv Polym Technol 37:1193–1205. https://doi.org/10.1002/adv.21779

    Article  CAS  Google Scholar 

  51. Persson M, Lorite GS, Cho SW, Tuukkanen J, Skrifvars M (2013) Melt spinning of poly(lactic acid) and hydroxyapatite composite fibers: Influence of the filler content on the fiber properties. ACS Appl Mater Interfaces 5:6864–6872. https://doi.org/10.1021/am401895f

    Article  CAS  Google Scholar 

  52. Bai H, Deng S, Bai D, Zhang Q, Fu Q (2017) Recent advances in processing of stereocomplex-type polylactide. Macromol Rapid Commun 38:1–12. https://doi.org/10.1002/marc.201700454

  53. Zhang J, Tashiro K, Tsuji H, Domb AJ (2007) Investigation of phase transitional behavior of poly(L-lactide)/poly(D-lactide) blend used to prepare the highly-oriented stereocomplex. Macromolecules 40:1049–1054. https://doi.org/10.1021/ma061693s

    Article  CAS  Google Scholar 

  54. Andersson SR, Hakkarainen M, Inkinen S, Södergård A, Albertsson AC (2010) Polylactide stereocomplexation leads to higher hydrolytic stability but more acidic hydrolysis product pattern. Biomacromol 11:1067–1073. https://doi.org/10.1021/bm100029t

    Article  CAS  Google Scholar 

  55. Tsuji H, Ikada Y (1999) Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films. Polymer (Guildf) 40:6699–6708. https://doi.org/10.1016/S0032-3861(99)00004-X

    Article  CAS  Google Scholar 

  56. Tan BH, Muiruri JK, Li Z, He C (2016) Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain Chem Eng 4:5370–5391. https://doi.org/10.1021/acssuschemeng.6b01713

    Article  CAS  Google Scholar 

  57. Gupta A, Prasad A, Mulchandani N, Shah M, Ravi Sankar M, Kumar S, Katiyar V (2017) Multifunctional nanohydroxyapatite-promoted toughened high-molecular-weight stereocomplex poly(lactic acid)-based bionanocomposite for both 3D-printed orthopedic implants and high-temperature engineering applications. ACS Omega 2:4039–4052. https://doi.org/10.1021/acsomega.7b00915

    Article  CAS  Google Scholar 

  58. Takasaki M, Ito H, Kikutani T (2003) Development of stereocomplex crystal of polylactide in high-speed melt spinning and subsequent drawing and annealing processes. J Macromol Sci Part B 42:403–420. https://doi.org/10.1081/MB-120021570

    Article  CAS  Google Scholar 

  59. Zhang X, Hua H, Shen X, Yang Q (2007) In vitro degradation and biocompatibility of poly(l-lactic acid)/chitosan fiber composites. Polymer (Guildf) 48:1005–1011. https://doi.org/10.1016/j.polymer.2006.12.028

    Article  CAS  Google Scholar 

  60. Pötschke P, Andres T, Villmow T, Pegel S, Brünig H, Kobashi K, Fischer D, Häussler L (2010) Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes. Compos Sci Technol 70:343–349. https://doi.org/10.1016/j.compscitech.2009.11.005

    Article  CAS  Google Scholar 

  61. Murariu M, Doumbia A, Bonnaud L, Dechief AL, Paint Y, Ferreira M, Campagne C, Devaux E, Dubois P (2011) High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromol 12:1762–1771. https://doi.org/10.1021/bm2001445

    Article  CAS  Google Scholar 

  62. Pantani R, Turng L-S (2015) Manufacturing of advanced biodegradable polymeric components. J Appl Polym Sci 132:n/a–n/a. https://doi.org/10.1002/app.42889

  63. Tsuji H (2005) Poly (lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5(7):569–597. https://doi.org/10.1002/mabi.200500062

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Katiyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hazarika, D., Kumar, A., Katiyar, V. (2020). Mimicking Smart Textile by Fabricating Stereocomplex Poly(Lactic Acid) Nanocomposite Fibers. In: Katiyar, V., Kumar, A., Mulchandani, N. (eds) Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-1251-3_15

Download citation

Publish with us

Policies and ethics