Skip to main content

P(VDF-TeFE)/Organic Semiconductor Structure Ferroelectric-Gate FETs

  • Chapter
  • First Online:
Ferroelectric-Gate Field Effect Transistor Memories

Part of the book series: Topics in Applied Physics ((TAP,volume 131))

  • 1852 Accesses

Abstract

Organic ferroelectric-gate field-effect transistor (FET) memories were fabricated using pentacene and rubrene thin films as the semiconductors and a poly(vinylidene fluoride–tetrafluoroethylene) [P(VDF-TeFE)] thin film as the ferroelectric gate. The P(VDF-TeFE) film was prepared by spin-coating and annealing at 170 \(^\circ \)C for 2.5 h, and the pentacene was prepared by vacuum evaporation. In contrast, the rubrene thin film sheet was grown by physical vapor transport and placed onto a spin-coated P(VDF-TeFE) thin film layer. The polarization-electric field hysteresis of the P(VDF-TeFE) thin film was observed, and the obtained remanent polarization of 3.9 \(\upmu \)C/cm\(^2\) was sufficient for controlling the surface potential of pentacene or rubrene. A hysteresis loop was clearly observed in the drain current-gate voltage behavior of the ferroelectric-gate FET. In the case of the ferroelectric-gate FET with P(VDF-TeFE)/pentacene, the ON/OFF ratio of drain current was 830, and the carrier mobility was 0.11  cm\(^2\)/Vs. On the other hand, the maximum drain current of the FET with P(VDF-TeFE)/rubrene was 1.6\(\,\times \,\)10\(^{-6}\) A, which is about two orders of magnitude larger than that of the P(VDF-TeFE)-gate FET using the pentacene thin film. The mobility of the organic ferroelectric-gate FET using the rubrene thin film was 0.71 cm\(^2\)/Vs, which is 6.5 times larger than that of the FET with pentacene thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Matsui, M. Okuyama, M. Noda and Y. Hamakawa: Appl. Phys. A 28, 161 (1982).

    Google Scholar 

  2. T. Hirai, Y. Fujisaki, K. Nagashima, H. Koike and Y. Tarui: Jpn. J. Appl. Phys. 36, 5908 (1997).

    Google Scholar 

  3. D. Y. Kusuma, C. A. Nguyen and P. S. Lee: J. Phys. Chem. B 114, 13289 (2010).

    Google Scholar 

  4. S.-M. Yoon, S.-W. Jung, S.-H. Yang, S.-Y. Kang, C.-S. Hwang and B.-G. Yu: Jpn. J. Appl. Phys. 48, 09KA20 (2009).

    Google Scholar 

  5. K. H. Lee, G. Lee, K. Lee, M. S. Oh and S. Im: Appl. Phys. Lett. 94, 093304 (2009).

    Google Scholar 

  6. B. Kam, X. Li, C. Cristoferi, E. Smits, A. Mityashin, S. Schols, J. Genoe, G. Gelinck and P. Heremans: Appl. Phys. Lett. 101, 033304 (2012).

    Google Scholar 

  7. R. Tamura, S. Yoshita, E. Lim, T. Manaka and M. Iwamoto: Jpn. J. Appl. Phys. 48, 021501 (2009).

    Google Scholar 

  8. S. Kang, I. Bae, J.-H. Choi, Y. Park, P. Jo, Y. Kim, K.-J. Kim, J.-M. Myoung, E. Kim and C. Park: J. Mater. Chem. 21, 3619 (2011).

    Google Scholar 

  9. E. Fukada: Kobayashi Institute of Physical Research News [in Japanese] 63, 5 (1999).

    Google Scholar 

  10. J. Hulburt and A. Feiring: Chem. Eng. News 75, 6 (1997).

    Google Scholar 

  11. A. E. Feiring and E. R. Wonchoba: Macromolecules 31, 7103 (1998).

    Google Scholar 

  12. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox: Gaussian 09, Revision A.02.

    Google Scholar 

  13. S. Tasaka and S. Miyata: J. Appl. Phys. 57, 906 (1985).

    Google Scholar 

  14. S. K. Gupta, P. Jha, A. Singh, M. M. Chehimi and D. K. Aswal: Journal of Materials Chemistry C 3, 8468 (2015).

    Google Scholar 

  15. A. Yassar: Polymer Science - Series C 56, 4 (2014).

    Google Scholar 

  16. C. Wang, H. Dong, W. Hu, Y. Liu and D. Zhu: Chem. Rev. 112, 2208 (2012).

    Google Scholar 

  17. A. Facchetti: Materials Today 10, 28 (2007).

    Google Scholar 

  18. J. Mei, Y. Diao, A. L. Appleton, L. Fang and Z. Bao: J. Am. Chem. Soc. 135, 6724 (2013).

    Google Scholar 

  19. J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda and S. Ogawa: Appl. Phys. Lett. 90, 102120 (2007).

    Google Scholar 

  20. O. D. Jurchescu, A. Meetsma and T. T. M. Palstra: Acta Crystallogr. B 62, 330 (2006).

    Google Scholar 

  21. S.-H. Lim, A. Rastogi and S. Desu: J. Appl. Phys. 96, 5673 (2004).

    Google Scholar 

  22. S. Fujisaki, H. Ishiwara and Y. Fujisaki: Appl. Phys. Lett. 90, 162902 (2007).

    Google Scholar 

  23. Y. Park, I.-S. Bae, S. Ju Kang, J. Chang and C. Park: IEEE Trans. Dielectr Electr. Insul. 17, 1135 (2010).

    Google Scholar 

  24. S. Das and J. Appenzeller: Nano Lett. 11, 4003 (2011).

    Google Scholar 

  25. Y. Park, S. Kang, Y. Shin, R.-H. Kim, I. Bae and C. Park: Curr. Appl. Phys. 11, e30 (2011).

    Google Scholar 

  26. H. Miyashita, T. Watanabe, T. Kanashima and M. Okuyama: Ext Abstr (69th Autumn Meeti, 2008); Japan Society of Applied Physics [in Japanese] (2008) 4a-K-8.

    Google Scholar 

  27. S.-M. Yoon, S. Yang, C.-W. Byun, S.-W. Jung, M.-K. Ryu, S.-H. K. Park, B. Kim, H. Oh, C.-S. Hwang and B.-G. Yu: Semicond Sci Tech 26, 034007 (2011).

    Google Scholar 

  28. C. H. Park, S. Im, J. Yun, G. H. Lee, B. H. Lee and M. M. Sung: Appl. Phys. Lett. 95, 223506 (2009).

    Google Scholar 

  29. S.-M. Yoon, S.-H. Yang, C.-W. Byun, S.-H. Ko Park, S.-W. Jung, D.-H. Cho, S.-Y. Kang, C.-S. Hwang and H. Ishiwara: Jpn. J. Appl. Phys. 49, 04DJ06 (2010).

    Google Scholar 

  30. G.-G. Lee, E. Tokumitsu, S.-M. Yoon, Y. Fujisaki, J.-W. Yoon and H. Ishiwara: Appl. Phys. Lett. 99, 012901 (2011).

    Google Scholar 

  31. A. Van Breemen, B. Kam, B. Cobb, F. G. Rodriguez, G. Van Heck, K. Myny, A. Marrani, V. Vinciguerra and G. Gelinck: Organic Electronics 14, 1966 (2013).

    Google Scholar 

  32. S.-M. Yoon, S. Yang, C. Byun, S.-H. K. Park, D.-H. Cho, S.-W. Jung, O.-S. Kwon and C.-S. Hwang: Adv. Funct. Mater. 20, 921 (2010).

    Google Scholar 

  33. S.-M. Yoon, S.-W. Jung, S.-H. Yang, C.-W. Byun, C.-S. Hwang, S.-H. Ko Park and H. Ishiwara: Organic Electronics 11, 1746 (2010).

    Google Scholar 

  34. J. A. Caraveo-Frescas, P. K. Nayak, H. A. Al-Jawhari, D. B. Granato, U. Schwingenschloegl and H. N. Alshareeft: ACS Nano 7, 5160 (2013).

    Google Scholar 

  35. T. Watanabe, H. Miyashita, T. Kanashima and M. Okuyama: Jpn. J. Appl. Phys. 49, 04DD14 (2010).

    Google Scholar 

  36. T. Kanashima, K. Yabe and M. Okuyama: Jpn. J. Appl. Phys. 51, 02BK06 (2012).

    Google Scholar 

  37. T. Kanashima, T. Watanabe and M. Okuyama: Int. Conf. on Advanced Electromaterials (ICAE 2011) (2011) FM859.

    Google Scholar 

  38. A. J. Lovinger: Macromolecules 16, 1529 (1983).

    Google Scholar 

  39. R. Khalfin, A. Bezprozvannykh and V. Poddubnyi: Polymer Science U.S.S.R. 30, 2138 (1988).

    Google Scholar 

  40. K. Tashiro and H. Kaito: Polymer, 2915 (1992).

    Google Scholar 

  41. H. Ohigashi: Jpn. J. Appl. Phys. Suppl. 24S2, 23 (1985).

    Google Scholar 

  42. Y. Murata: Polymer Journal 19, 337 (1987).

    Google Scholar 

  43. R. A. Laudise, C. Kloc, P. G. Simpkins and T. Siegrist: J. Cryst. Growth 187, 449 (1998).

    Google Scholar 

  44. J.-H. Jeong, C. Kimura, H. Aoki and T. Sugino: Jpn. J. Appl. Phys. 49, 04DK23 (2010).

    Google Scholar 

  45. J.-H. Jeong, D. Terashima, C. Kimura and H. Aoki: Jpn. J. Appl. Phys. 50, 04DK09 (2011).

    Google Scholar 

  46. L. Mariucci, D. Simeone, S. Cipolloni, L. Maijo, A. Pecora, G. Fortunato and S. Brotherton: Solid State Electron 52, 412 (2008).

    Google Scholar 

  47. J. C. Hicks, T. E. Jones and J. C. Logan: J. Appl. Phys. 49, 6092 (1978).

    Google Scholar 

  48. Y. Waseda, E. Matsubara and K. Shinoda: X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems (Springer, Berlin Heidelberg, 2011).

    Google Scholar 

  49. D. E. Henn, W. G. William and D. J. Gibbons: J. Appl. Crystallogr. 4, 256 (1971).

    Google Scholar 

  50. X. Zeng, D. Zhang, L. Duan, L. Wang, G. Dong and Y. Qiu: Appl. Surf. Sci. 253, 6047 (2007).

    Google Scholar 

  51. W.-H. Kim, M.-H. Kim, C.-M. Keum and J. Park: J. Appl. Phys. 109, 024508 (2011).

    Google Scholar 

  52. R. C. G. Naber, K. Asadi, P. W. M. Blom, D. M. De Leeuw and B. De Boer: Adv. Mater. 22, 933 (2010).

    Google Scholar 

  53. C. Nguyen, S. Mhaisalkar, J. Ma and P. Lee: Organic Electronics 9, 1087 (2008).

    Google Scholar 

  54. K. N. Narayanan Unni, S. Dabos-Seignon and J.-M. Nunzi: J. Phys. D-Appl. Phys. 38, 1148 (2005).

    Google Scholar 

  55. T. N. Ng, B. Russo and A. C. Arias: J. Appl. Phys. 106, 094504 (2009).

    Google Scholar 

  56. S. J. Kang, I. Bae, Y. J. Park, T. H. Park, J. Sung, S. C. Yoon, K. H. Kim, D. H. Choi and C. Park: Adv. Funct. Mater. 19, 1609 (2009).

    Google Scholar 

  57. R. Naber, C. Tanase, P. Blom, G. Gelinck, A. Marsman, F. Touwslager, S. Setayesh and D. De Leeuw: Nature Mater. 4, 243 (2005).

    Google Scholar 

  58. K. Mueller, K. Henkel, I. Paloumpa and D. Schmeiber: Thin Solid Films 515, 7683 (2007).

    Google Scholar 

  59. S. Kang, Y. Park, I. Bae, K.-J. Kim, H.-C. Kim, S. Bauer, E. Thomas and C. Park: Adv. Funct. Mater. 19, 2812 (2009).

    Google Scholar 

  60. K. N. N. Unni, R. de Bettignies, S. Dabos-Seignon and J.-M. Nunzi: Mater. Lett. 59, 1165 (2005).

    Google Scholar 

  61. R. Naber, M. Mulder, B. De Boer, P. Blom and D. De Leeuw: Organic Electronics 7, 132 (2006).

    Google Scholar 

  62. J. Chang, C. Shin, Y. Park, S. Kang, H. Jeong, K.-J. Kim, C. Hawker, T. Russell, D. Ryu and C. Park: Organic Electronics 10, 849 (2009).

    Google Scholar 

  63. W. Choi, S. H. Noh, D. K. Hwang, J.-M. Choi, S. Jang, E. Kim and S. Im: Electrochem. Solid-State Lett. 11, H47 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kanashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanashima, T., Okuyama, M. (2020). P(VDF-TeFE)/Organic Semiconductor Structure Ferroelectric-Gate FETs. In: Park, BE., Ishiwara, H., Okuyama, M., Sakai, S., Yoon, SM. (eds) Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics, vol 131. Springer, Singapore. https://doi.org/10.1007/978-981-15-1212-4_11

Download citation

Publish with us

Policies and ethics