Skip to main content

Poly(Vinylidenefluoride-Trifluoroethylene) P(VDF-TrFE)/Semiconductor Structure Ferroelectric-Gate FETs

  • Chapter
  • First Online:
Ferroelectric-Gate Field Effect Transistor Memories

Part of the book series: Topics in Applied Physics ((TAP,volume 131))

  • 2040 Accesses

Abstract

Ferroelectric field-effect transistors (FeFETs) composed of P(VDF-TrFE) (Poly(Vinylidenefluoride-Tirfluoroethylene)) thin films and semiconductor substrates show excellent ferroelectric transistor characteristics. Since P(VDF-TrFE) has the ferroelectricity as large as those of oxide ferroelectric materials with much lower dielectric constant, it is the ideal material to build FeFET with the combination to inorganic semiconductor material. In addition, the process condition to form P(VDF-TrFE) is much milder to underlying semiconducting material compared to oxide ferroelectrics. Therefore, the improvement on the retention characteristics is expected by employing P(VDF-TrFE) ferroelectrics in FeFET instead of oxide ferroelectrics. The potential of P(VDF-TrFE) FeFET is discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    poly(3-hexyltiophene).

  2. 2.

    poly[2-methoxy, 5-(2′-ethyl-hexyloxy)-p-phenylene-vinylene].

  3. 3.

    poly(2-methoxy-5-(3′, 7′-dimethylocthyloxy)-phenylenevinylene).

  4. 4.

    [6,6]-phenyl-C61-butyricacidmethylester.

  5. 5.

    p(fluorene-bithiophene).

References

  1. Y. Fujisaki, T. Kijima, H. Ishiwara, Appl. Phys. Lett. 78, 1285 (2001)

    Google Scholar 

  2. Y. Tabuchi, B. Park, K. Aizawa, Y. Kawashima, K. Takahashi, K. Kato, Y. Arimoto, H. Ishiwara, Integr. Ferroelectr. 65, 125 (2004)

    Google Scholar 

  3. S. Sakai, M. Takahashi, R. Ilangovan, Tech. Digest Int. Electron Dev. Meeting, 915 (2004)

    Google Scholar 

  4. E. Tokumitsu, G. Fujii,, H. Ishiwara, Appl. Phys. Lett. 75, 575 (1999)

    Google Scholar 

  5. H. Kawai, Jpn. J. Appl. Phys. 18, 976 (1969)

    Google Scholar 

  6. R. Hasegawa, Y. Takahashi, Y. Chatani, H. Tadokoro, Polymer J. 3, 600 (1972)

    Google Scholar 

  7. A.J. Lovinger, Development in Crystalline Polymers-1 (Applied Science Publishers, London and New Jersey, 1982), p. 195

    Google Scholar 

  8. P. DeSantis, E. Giglio, A.M. Liquori, A. Ripamonti, J. Polymer Sci. A, 1, 1383 (1963)

    Google Scholar 

  9. H. Horibe, M. Taniyama, J. Electrochem. Soc. 153, G119 (2006)

    Google Scholar 

  10. A.J. Bur, J.D. Barnes, K.J. Wahlstrand, J. Appl. Phys. 59, 2345 (1986)

    Google Scholar 

  11. H. Dvey-Aharon, T.J. Slucjin, P.L. Taylor, A.J. Hopfinger, Phys. Rev. B 21, 3700 (1980)

    Google Scholar 

  12. J.D. Clark, P.L. Taylor, Phys. Rev. Lett. 49, 1532 (1928)

    Google Scholar 

  13. F. Mospik, M.G. Broadhurst, J. Appl. Phys. 46, 4992 (1978)

    Google Scholar 

  14. H. Kakutani, J. Polymer Sic. 8, 1177 (1970)

    Google Scholar 

  15. M.G. Groadhurst, G.T. Davis, Topics in Modern Physics-Electronics, 2nd edn. (Springer, Berlin, 1987), p. 285

    Google Scholar 

  16. C.K. Purvis, P.L. Taylor, Phys. Rev. B 26, 4547 (1982)

    Google Scholar 

  17. C.K. Purvis, P.L. Taylor, J. Appl. Phys. 54, 1021 (1983)

    Google Scholar 

  18. R. Al-Jishi, P.L. Taylor, J. Appl. Phys. 57, 897 (1985)

    Google Scholar 

  19. R. Al-Jishi, P.L. Taylor, J. Appl. Phys. 57, 902 (1985)

    Google Scholar 

  20. H. Ogura, A. Chiba, Ferroelectrics 74, 247 (1987)

    Google Scholar 

  21. H. Tanaka, H. Yukawa, T. Nishi, Macromolecules 21, 2469 (1988)

    Google Scholar 

  22. T.R. Dargaville, J.M. Elliott, M. Celina, J. Polymer Sci. B 44, 3253 (2006)

    Google Scholar 

  23. T.R. Dargaville, M. Celina, P.M. Chaplya, J. Polymer Sci. B, 43, 1310 (2005)

    Google Scholar 

  24. H. Xu, J. Appl. Polymer Sci. 80, 2259 (2001)

    Google Scholar 

  25. M.P. Wenger, P.L. Almeida, P. Blanas, R.J. Shuford, D.K. Das-Gupta, Polym. Eng. Sci. 39, 483 (1999)

    Google Scholar 

  26. S. Fujisaki, H. Ishiwara, Y. Fujisaki, Appl. Phys. Lett. 90, 162902 (2007)

    Google Scholar 

  27. S. Fujisaki, Research on the application of organic ferroelectric P(VDF-TrFE) to non-volatile memories. Doctorial theses in Japanese, Japan (2008)

    Google Scholar 

  28. S. Fujisaki, Y. Fujisaki, H. Ishiwara, IEEE Trans. Ultrason. Ferroelectric. Freq. Control 54, 2592 (2007)

    Google Scholar 

  29. A. Gerber, H. Kohlstedt, M. Fitsilis, R. Waser, T.J. Reece, S. Ducharme, E. Rije, J. Appl. Phys. 100, 024110 (2006)

    Google Scholar 

  30. J.H. Kim, B.E. Park, H. Ishiwara, Jpn. J. Appl. Phys. 47, 8472 (2008)

    Google Scholar 

  31. G.A. Salvatore, D. Bouvet, A.M. Ionescu, Proc. IEEE Intern. Electron. Dev. Meeting 1 (2008)

    Google Scholar 

  32. T.J. Reece, S. Ducharme, A.V. Sorokin, M. Poulsen, App. Phys. Lett. 82, 142 (2003)

    Google Scholar 

  33. S.H. Lim, A.C. Rastogi, S.B. Desu, J. Appl. Phys. 96, 5673 (2004)

    Google Scholar 

  34. S. Fujisaki, Y. Fujiski, H. Ishiwara, Appl. Phys. Express, 1, 081801 (2008)

    Google Scholar 

  35. G.-G. Lee, E. Tokumitsu, S.-M. Yoon, Y. Fujisaki, J-W. Yoon, H. Ishiwara, Appl. Phys. Lett. 99, 012901 (2011)

    Google Scholar 

  36. C.H. Park, G. Lee, K.H. Lee, S. Im, B. H. Lee, M.M. Sung, Appl. Phys. Lett. 95, 153502 (2009)

    Google Scholar 

  37. S.-M. Yoon, S.-H. Yang, S.-H. Ko Park, S.-W. Jung, D.-H. Cho, C.-E. Byun, S.-Y. Kang, C.-S. Hwang, B.-G. Yu, J. Phys. D 42, 245101 (2009)

    Google Scholar 

  38. R.C.G. Naber, J. Massolt, M. Spijkman, K. Asadi, P.W.M. Blom, D.M. de Leeuw, Appl. Phys. Lett. 90, 113509 (2007)

    Google Scholar 

  39. R.C.G. Naber, C. Tanase, P.W.M. Blom, G.H. Gelinck, A.W. Marsman, F.J. Touwslager, S. Sepas, D.M. de Leeuw, Nat. Mater. 4, 243 (2005)

    Google Scholar 

  40. G.H. Gelinck, A.W. Marsman, F.J. Touwslager, S. Setaesh. D.M. de Leeuw, R.C.G. Naber, P. W. M. Blom, Appl. Phys. Lett. 87, 092903 (2005)

    Google Scholar 

  41. K. Müller, I. Paloumpa, K. Henkel, D. Schmeisser, J. Appl. Phys. 98, 056104 (2005)

    Google Scholar 

  42. K.N. Narayanan Unni, R. de Bettignies, S. Dabos-Seignon, J.-M. Nunzi, Appl. Phys. Lett. 85, 1823 (2004)

    Google Scholar 

  43. R. Schroeder, L.A. Majewski, Martin Grell, Adv. Mater. 16, 633 (2004)

    Google Scholar 

  44. J. Karasawa, Applications of ferroelectrics 2007, in International Symposium on Applications of Ferroelectrics (2007), p. 41. https://doi.org/10.1109/isaf.2007.4393161

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Fujisaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujisaki, Y. (2020). Poly(Vinylidenefluoride-Trifluoroethylene) P(VDF-TrFE)/Semiconductor Structure Ferroelectric-Gate FETs. In: Park, BE., Ishiwara, H., Okuyama, M., Sakai, S., Yoon, SM. (eds) Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics, vol 131. Springer, Singapore. https://doi.org/10.1007/978-981-15-1212-4_10

Download citation

Publish with us

Policies and ethics