Skip to main content

Thermally Developing Region of a Parallel Plate Channel Partially Filled with a Porous Material with the Effect of Axial Conduction and Viscous Dissipation: Uniform Wall Heat Flux

  • Conference paper
  • First Online:
Advances in Applied Mechanical Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

The present investigation has been undertaken to assess the effect of axial conduction and viscous dissipation on heat transfer characteristics in the thermally developing region of a parallel plate channel with porous insert attached to both the walls of the channel. Both the walls are kept at uniform heat flux. The fully developed flow field in the porous region corresponds to Darcy–Brinkman equation and the clear fluid region to that of plane Poiseuille flow. The effect of parameters, Brinkman number, Br, Darcy number, Da, Peclet number, Pe, and a porous fraction, γp have been studied. The numerical solutions have been obtained for, 0.005 ≤ Da ≤ 1.0, 0 ≤ γp ≤ 1.0 and −1.0 ≤ Br ≤ 1.0 and Pe = 5, 25, 50, 100 and neglecting axial conduction (designated by Ac = 0) by using the numerical scheme successive accelerated replacement (SAR). There is an unbounded swing in the local Nusselt number because of viscous dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal HC (1960) Heat transfer in laminar flow between parallel plates at small Peclet Numbers. Appl Sci Res 9:177–189

    Article  Google Scholar 

  2. Hennecke DK (1968) Heat transfer by Hagen-Poiseuille flow in the thermal development region with axial conduction. Warme- und Stoffubertragung 1:177–184

    Article  Google Scholar 

  3. Ramjee R, Satyamurty VV (2010) Local and average heat transfer in the thermally developing region of an asymmetrically heated channel. Int J Heat Mass Trans 53:1654–1665

    Article  Google Scholar 

  4. Jagadeesh Kumar M (2016) Effect of axial conduction and viscous dissipation on heat transfer for laminar flow through a circular pipe. Perspect Sci 8:61–65

    Article  Google Scholar 

  5. Shah RK, London AL (1978) Laminar flow forced convection in ducts. Advances in heat transfer, supplement 1. Academic Press, New York

    Google Scholar 

  6. Hooman K, Haji-sheik A, Nield DA (2007) Thermally developing Brinkman-Brinkman forced convection in rectangular ducts with isothermal walls. Int J Heat Mass Trans 50:3521–3533

    Article  Google Scholar 

  7. Kuznetsov AV, Xiong M, Nield DA (2003) Thermally developing forced convection in a porous medium: circular duct with walls at constant temperature, with longitudinal conduction and viscous dissipation effects. Transp Porous Media 53:331–345

    Article  MathSciNet  Google Scholar 

  8. Nield DA, Kuznetsov AV, Xiong M (2003) Thermally developing forced convection in a porous medium: parallel plate channel with walls at uniform temperature, with axial conduction and viscous dissipation effects. Int J Heat Mass Trans 46:643–651

    Article  Google Scholar 

  9. Satyamurty VV, Bhargavi D (2010) Forced convection in thermally developing region of a channel partially filled with a porous material and optimal porous fraction. Int J Therm Sci 49:319–332

    Article  Google Scholar 

  10. Bhargavi D, Sharath Kumar Reddy J (2018) Effect of heat transfer in the thermally developing region of the channel partially filled with a porous medium: constant wall heat flux. Int J Therm Sci 130:484–495

    Article  Google Scholar 

  11. Ramjee R, Satyamurty VV (2013) Effect of viscous dissipation on forced convection heat transfer in parallel plate channels with asymmetric boundary conditions. In: Proceedings of the ASME, International Mechanical Engineering Congress and Exposition (IMECE 2013), San Diego, California, USA, 15–21 Nov 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sharath Kumar Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharath Kumar Reddy, J., Bhargavi, D. (2020). Thermally Developing Region of a Parallel Plate Channel Partially Filled with a Porous Material with the Effect of Axial Conduction and Viscous Dissipation: Uniform Wall Heat Flux. In: Voruganti, H., Kumar, K., Krishna, P., Jin, X. (eds) Advances in Applied Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-1201-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1201-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1200-1

  • Online ISBN: 978-981-15-1201-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics