Skip to main content

The Timescale of Thermal Comfort Adaptation in Heated and Unheated Buildings

  • Chapter
  • First Online:
The Dynamics and Mechanism of Human Thermal Adaptation in Building Environment

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In the previous chapter, we investigated the mutual relationships between occupants’ indoor thermal experience and comfort expectation through an online survey. The results showed an asymmetrical phenomenon and the ‘demand factor’ was proposed to describe it. However, due to it was an online survey, there may exist uncertainties. This chapter will future clarify the dynamics of thermal comfort adaptation especially its timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deuble MP, de Dear RJ (2012) Mixed-mode buildings: a double standard in occupants’ comfort expectation. Build Environ 54:53–60

    Article  Google Scholar 

  2. Luo M, Cao B, Damiens J, Lin B, Ouyang Q et al (2015) Evaluating thermal comfort in mixed-mode buildings: A field study in a subtropical climate. Build Environ 88:46–54

    Article  Google Scholar 

  3. Rupp R, de Dear R, Ghisi E (2018) Field study of mixed-mode office buildings in Southern Brazil using an adaptive thermal comfort framework. Energy Build 158:1475–1486

    Article  Google Scholar 

  4. Candido C, de Dear R, Lamberts R, Bittencourt L (2010) Cooling exposure in hot humid climates: are occupants ‘addicted’? Archit Sci Rev 53(1):59–64

    Article  Google Scholar 

  5. Ghahramani A, Zhang K, Dutta K et al (2016) Energy savings from temperature setpoints and dead band: quantifying the influence of building and system properties on savings. Appl Energy 165:930–942

    Article  Google Scholar 

  6. de Dear R (1998) Global database of thermal comfort field experiments. ASHRAE Trans 104:1141–1152

    Google Scholar 

  7. de Dear R, Brager G (2001) The adaptive model of thermal comfort and energy conservation in the built environment. Int J Biometeorol 45:100–108

    Article  Google Scholar 

  8. Carlucci S, Bai L, de Dear R, Yang L (2018) Review of adaptive thermal comfort models in built environmental regulatory documents. Build Environ 137:73–89

    Google Scholar 

  9. Zaki S, Damiati S, Rijal H, Hagishima A, Razak A (2017) Adaptive thermal comfort in university classrooms in Malaysia and Japan. Build Environ 122:294–306

    Article  Google Scholar 

  10. Ning H, Wang Z, Zhang X, Ji Y (2016) Adaptive thermal comfort in university dormitories in the severe cold area of China. Build Environ 99:161–169

    Article  Google Scholar 

  11. Yu J, Ouyang Q, Zhu Y et al (2012) A comparison of the thermal adaptability of people accustomed to air conditioned environments and naturally ventilated environments. Indoor Air 22:110–118

    Article  Google Scholar 

  12. van der Lans A, Hoeks J, Brans B et al (2013) Cold acclimation recruits human brown fat and increases no-shivering thermogenesis. J Clin Investig 123(8):3395–3403

    Article  Google Scholar 

  13. Candido C, de Dear R, Ohba M (2012) Effects of artificially induced heat acclimatization on subjects’ thermal and air movement preferences. Build Environ 49:251–258

    Article  Google Scholar 

  14. Liu Y, Yu D, Cong S et al (2017) A tracked field study of thermal adaptation during a short-term migration between cold and hot-summer and warm-winter areas of China. Build Environ 124:90–103

    Google Scholar 

  15. Nicol J, Humphreys M (2002) Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build 34(6):563–572

    Article  Google Scholar 

  16. Humphreys MA (1976) Field studies of thermal comfort compared and applied. J Inst Heat Ventilating Eng 44(1):5–27

    Google Scholar 

  17. ISO EN ISO 8996 (2004) Ergonomics of the thermal environment—determination of metabolic rate. International organization for Standardization, Geneva

    Google Scholar 

  18. Foldvary V, Cheung T, Zhang H et al (2018) Development of the ASHRAE global thermal comfort database II. Build Environ 142:502–512

    Article  Google Scholar 

  19. van Marken Lichtenbelt W, Vanhommerig J, Smelders N et al (2009) Cold activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508

    Google Scholar 

  20. Luo M, Ji W, Cao B et al (2016) Indoor climate and thermal physiological adaptations: evidences from migrants with different cold indoor exposures. Build Environ 98:30–38

    Article  Google Scholar 

  21. Wijayanto T, Toramoto S, Wakabayashi H, Tochihara Y (2012) Effects of duration of stay in temperate area on thermoregulatory responses to passive heat exposure in tropical south-east Asian males residing in Japan. J Physiol Anthropol 31(1):1–10

    Article  Google Scholar 

  22. Cao B, Zhu Y, Ouyang Q, Zhou X, Huang L (2011) Field study on human thermal comfort and thermal adaptability during the summer and winter in Beijing. Energy Build 43(5):1051–1056

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maohui Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Tsinghua University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, M. (2020). The Timescale of Thermal Comfort Adaptation in Heated and Unheated Buildings. In: The Dynamics and Mechanism of Human Thermal Adaptation in Building Environment. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1165-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1165-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1164-6

  • Online ISBN: 978-981-15-1165-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics