Skip to main content

Numerical Study of Conformable Space and Time Fractional Fokker–Planck Equation via CFDT Method

  • Conference paper
  • First Online:
Mathematical Analysis II: Optimisation, Differential Equations and Graph Theory (ICRAPAM 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 307))

Abstract

In this article, conformable fractional differential transform (CFDT) method has been successfully implemented to compute the numerical solution of space–time fractional Fokker–Planck equation with conformable fractional derivative. The computed results are compared with the existing results in the literature, and also depicted graphically for \(\alpha =\beta =1\). The accuracy of the computed results for different values of \(\alpha \) and \(\beta =1\) is measured in terms of \(L_2\) error norms. The findings show that the present results agreed well with the results by various well-known methods such as Adomian decomposition method (ADM), variational iteration method (VIM), fractional variational iteration method (FVIM) and fractional reduced differential transform method (FRDTM), and so forth. The proposed results converge to the exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Kaplan, P. Mayeli, K. Hosseini, Exact traveling wave solutions of the Wu-Zhang system describing (1 + 1)-dimensional dispersive long wave. Opt. Quantum Electron. 49(12), 404 (2017), https://doi.org/10.1007/s11082-017-1231-0

  2. S. Momani, Z. Odibat, V.S. Erturk, Generalized differential transform method for solving a space- time fractional diffusion-wave equation. Phys. Lett. A 370(5–6), 379–387 (2007). https://doi.org/10.1016/j.physleta.2007.05.083

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Thabet, S. Kendre, D. Chalishajar, New analytical technique for solving a system of nonlinear fractional partial differential equations. Mathematics 25(4), 47 (2017). https://doi.org/10.3390/math5040047

    Article  MATH  Google Scholar 

  4. A. Biswas et al., Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution. Optik 165, 233–239 (2018)

    Article  Google Scholar 

  5. A.F. Qasim, M.O. Al-Amr, Approximate solution of the Kersten-Krasil’shchik coupled Kdv-MKdV system via reduced differential transform method, Eurasian J. Sci. Eng. 4(2), 1–9 (2018)

    Google Scholar 

  6. O. Mohammed, Al-Amr, Shoukry El-Ganaini, new exact traveling wave solutions of the (4+1)-dimensional Fokas equation. Comput. Math. Appl. 74, 1274–1287 (2017)

    Article  MathSciNet  Google Scholar 

  7. S. El-Ganaini, M.O. Al-Amr, New abundant wave solutions of the conformable space-time fractional (4+1)-dimensional Fokas equation in water waves. Comput. Math. Appl. (2019). https://doi.org/10.1016/j.camwa.2019.03.050

    Article  MathSciNet  Google Scholar 

  8. A.J. Al-Sawoor, M.O. Al-Amr, A new modification of variational iteration method for solving reaction-diffusion system with fast reversible reaction. J. Egyptian Math. Soc. 22(3), 396–401 (2014)

    Article  MathSciNet  Google Scholar 

  9. A. Al-Sawoor, M. Al-Amr, Numerical solution of a reaction-diffusion system with fast reversible reaction by using Adomian’s decomposition method and He’s variational iteration method. Al-Rafidain J. Comput. Sci. Math. 9(2), 243–257 (2012)

    Google Scholar 

  10. M.O. Al-Amr, Exact solutions of a family of higher-dimensional space-time fractional KdV type equations. Comput. Sci. Inf. Technol. 8(6), 131–141 (2018)

    Google Scholar 

  11. Z.M. Odibat, S. Kumar, A robust computational algorithm of homotopy asymptotic method for solving systems of fractional differential equations. J. Comput. Nonlinear Dyn. https://doi.org/10.1115/1.4043617

  12. M. Khader, S. Kumar, S. Abbasbandy, Fractional homotopy analysis transforms method for solving a fractional heat-like physical model. Walailak J. Sci. Technol. 13(5), 337–353 (2015)

    Google Scholar 

  13. S. Kumar, A new mathematical model for nonlinear wave in a hyperelastic rod and its analytic approximate solution. Walailak J. Sci. Technol. 11, 965–973 (2014)

    Google Scholar 

  14. S. Kumar, A new efficient algorithm to solve non-linear fractional Ito coupled system and its approximate solution. Walailak J. Sci. Technol. 11(12), 1057–1067 (2014)

    Google Scholar 

  15. A. Prakash, P. Veeresha, D.G. Prakasha, M. Goyal, A homotopy technique for a fractional order multi-dimensional telegraph equation via the laplace transform. Eur. Phys. J. Plus 134(19), 1–18 (2019)

    Google Scholar 

  16. A. Prakash, M. Kumar, K.K. Sharma, Numerical method for solving coupled Burgers equation. Appl. Math. Comput. 260, 314–320 (2015)

    MathSciNet  MATH  Google Scholar 

  17. A. Prakash, M. Goyal, S. Gupta, A reliable algorithm for fractional Bloch model arising in magnetic resonance imaging, Pramana-J. Phys. 92(2), 1–10 (2019), https://doi.org/10.1007/s12043-018-1683-1

  18. A. Prakash, M. Kumar, Numerical method for solving time-fractional Multi-dimensional diffusion equations. Int. J. Comput. Sci. Math. 8(3), 257–267 (2017)

    Article  MathSciNet  Google Scholar 

  19. A. Prakash, M. Kumar, D. Baleanu, A new iterative technique for a fractional model of nonlinear Zakharov-Kuznetsov equations via Sumudu transform. Appl. Math. Comput. 334, 30–40 (2018)

    MathSciNet  MATH  Google Scholar 

  20. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative. J Comput. Appl. Math. 264, 65–70 (2014), https://doi.org/10.1016/j.cam.2014.01.002

    Article  MathSciNet  Google Scholar 

  21. N. Benkhettou, S. Hassani, D.F. Torres, A conformable fractional calculus on arbitrary time scales. J. King Saud Univ. Sci. 28(1), 93–98 (2016), https://doi.org/10.1016/j.jksus.2015.05.003

    Article  Google Scholar 

  22. T. Abdeljawad, On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015). https://doi.org/10.1016/j.cam.2014.10.016, arXiv:1402.6892v1

    Article  MathSciNet  Google Scholar 

  23. K. Hosseini, A. Bekir, R. Ansari, New exact solutions of the conformable time-fractional Cahn-Allen and Cahn-Hilliard equations using the modified Kudryashov method. Opt. Int. J. Light Electron. Opt. 132, 203–209 (2017), https://doi.org/10.1016/j.ijleo.2016.12.032

    Article  Google Scholar 

  24. K. Hosseini, P. Mayeli, R. Ansari, Modified Kudryashov method for solving the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities. Opt. Int. J. Light Electron. Opt. 130, 737–742 (2017), https://doi.org/10.1016/j.ijleo.2016.10.136

    Article  Google Scholar 

  25. O.S. Iyiola, O. Tasbozan, A. Kurt, Y. Çenesiz, On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion. Chaos, Solitons Fractals 94, 1–7 (2017). https://doi.org/10.1016/j.chaos.2016.11.003

    Article  MathSciNet  MATH  Google Scholar 

  26. N. Raza, S. Sial, M. Kaplan, Exact periodic and explicit solutions of higher dimen- sional equations with fractional temporal evolution. Opt. Int. J. Light Electron. Opt. 156, 628–634 (2018). https://doi.org/10.1016/j.ijleo.2017.11.107

    Article  Google Scholar 

  27. E. Ünal, A. Gökdoǧan, Solution of conformable fractional ordinary differential equations via differential transform method. Opt. Int. J. Light Electron. Opt. 128, 264–273 (2017). https://doi.org/10.1016/j.ijleo.2016.10.031

    Article  Google Scholar 

  28. M. Ekici, M. Mirzazadeh, M. Eslami, Q. Zhou, S.P. Moshokoa, A. Biswas et al., Optical soliton perturbation with fractional-temporal evolution by first integral method with conformable fractional derivatives. Opt. Int. J. Light Electron. Opt. 127(22), 10659–10669 (2016). https://doi.org/10.1016/j.ijleo.2016.08.076

    Article  Google Scholar 

  29. H.C. Yaslan, New analytic solutions of the conformable space-time fractional Kawahara equation. Opt. Int. J. Light Electron. Opt. 140, 123–126 (2017), https://doi.org/10.1016/j.ijleo.2017.04.015

    Article  Google Scholar 

  30. M. Kaplan, Applications of two reliable methods for solving a nonlinear conformable time-fractional equation. Opt. Quantum Electron. 49(9), 312 (2017), https://doi.org/10.1007/s11082-017-1151-z

  31. A.A. Kilbas, H.M. Srivastava, Trujillo JJ. Theory andapplications offractional differential equations, 204 (Elsevier Science Limited, 2006)

    Google Scholar 

  32. I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, 198 (Academic press, 1998)

    Google Scholar 

  33. A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative. Open. Math. 13(1), 889–898 (2015), https://doi.org/10.1515/math-2015-0081

  34. M. Magdziarz, A. Weron, K. Weron, Fractional Fokker-Planck dynamics: stochastic representation and computer simulation. Phys. Rev. E 75(1-6), 016708 (2007)

    Google Scholar 

  35. L. Yan, Numerical solutions of fractional Fokker-Planck equations using iterative Laplace transform method. Abstr. Appl. Anal. 2013(1-7), 465160 (2013)

    MathSciNet  Google Scholar 

  36. A. Yildirim, Analytical approach to Fokker-Planck equation with space-and time-fractional derivatives by homotopy perturbation method. J. King Saud. Univ. (Science) 22, 257–264 (2010)

    Article  Google Scholar 

  37. F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)

    Article  MathSciNet  Google Scholar 

  38. R. Metzler, T.F. Nonnenmacher, Space-and time fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation. Chem. Phys. 284(1–2), 67–90 (2002)

    Article  Google Scholar 

  39. R. Metzler, E. Barkai, J. Klafter, Deriving fractional Fokker-Planck equations from generalised master equation. Europhys. Lett. 46(4), 431–436 (1999)

    Article  MathSciNet  Google Scholar 

  40. S.A. El-Wakil, M.A. Zahran, Fractional Fokker-Planck equation. Chaos, Solitons Fractals 11(5), 791–798 (2000)

    Article  MathSciNet  Google Scholar 

  41. V.E. Tarasov, Fokker-Planck equation for fractional systems. Int. J. Modern Phys. B 21(6), 955–967 (2007)

    Article  MathSciNet  Google Scholar 

  42. W. Deng, Finite element method for the space and time-fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2004)

    Article  MathSciNet  Google Scholar 

  43. Z. Odibat, S. Momani, Numerical solution of Fokker-Planck equation with space and time-fractional derivatives. Phys. Lett. A: Gen. Atomic Solid-State Phys. 369(5–6), 349–358 (2007)

    Article  Google Scholar 

  44. A. Saravanan, N. Magesh, An efficient computational technique for solving the Fokker-Planck equation with space and time fractional derivatives. J. King Saud Univ. Sci. 28, 160–166 (2016)

    Article  Google Scholar 

  45. A. Prakash, H. Kaur, Numerical solution for fractional model of Fokker-Planck equation by using q-HATM. Chaos, Solitons, Fractals 105, 99–110 (2017)

    Article  MathSciNet  Google Scholar 

  46. H. Thabet, S. Kendre, Analytical solutions for conformable space-time fractional partial differential equations via fractional differential transform. Chaos, Solitons, Fractals 109, 238–245 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajesh Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, B.K., Kumar, A. (2020). Numerical Study of Conformable Space and Time Fractional Fokker–Planck Equation via CFDT Method. In: Deo, N., Gupta, V., Acu, A., Agrawal, P. (eds) Mathematical Analysis II: Optimisation, Differential Equations and Graph Theory. ICRAPAM 2018. Springer Proceedings in Mathematics & Statistics, vol 307. Springer, Singapore. https://doi.org/10.1007/978-981-15-1157-8_19

Download citation

Publish with us

Policies and ethics