Skip to main content

Complication of Homeostasis (Electrolytes and Acid-Base)

  • Chapter
  • First Online:
Acute Kidney Injury and Regenerative Medicine

Abstract

Patients who develop acute kidney injury (AKI) are at a great risk of both electrolyte abnormalities and acid-base disorders, which can be complicated and progressive because of the acute deterioration of kidney function and the impact of renal replacement therapy. Thus, we should recognize the significance of these disorders and tackle them accordingly. Among various acid-base disorders and electrolyte abnormalities, we discuss metabolic acidosis, metabolic alkalosis, hyperkalemia, hypokalemia, hypocalcemia, hypercalcemia, and hyperphosphatemia, all of which are frequently encountered in the setting of AKI and can significantly influence morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Uchino S, Bellomo R, Morimatsu H, et al. Continuous renal replacement therapy: a worldwide practice survey. The beginning and ending supportive therapy for the kidney (B.E.S.T. kidney) investigators. Intensive Care Med. 2007;33(9):1563–70.

    Article  PubMed  Google Scholar 

  2. Thadhani R, Pascual M, Bonventre JV. Acute renal failure. N Engl J Med. 1996;334(22):1448–60.

    Article  CAS  PubMed  Google Scholar 

  3. Faubel S, Shah PB. Immediate consequences of acute kidney injury: the impact of traditional and nontraditional complications on mortality in acute kidney injury. Adv Chronic Kidney Dis. 2016;23(3):179–85.

    Article  PubMed  Google Scholar 

  4. Zivin JR, Gooley T, Zager RA, et al. Hypocalcemia: a pervasive metabolic abnormality in the critically ill. Am J Kidney Dis. 2001;37(4):689–98.

    Article  CAS  PubMed  Google Scholar 

  5. Boles JM, Dutel JL, Briere J, et al. Acute renal failure caused by extreme hyperphosphatemia after chemotherapy of an acute lymphoblastic leukemia. Cancer. 1984;53(11):2425–9.

    Article  CAS  PubMed  Google Scholar 

  6. Shaw AD, Bagshaw SM, Goldstein SL, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255(5):821–9.

    Article  PubMed  Google Scholar 

  7. Yunos NM, Bellomo R, Hegarty C, et al. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72.

    Article  CAS  PubMed  Google Scholar 

  8. Gennari FJ. Intravenous fluid therapy: saline versus mixed electrolyte and organic anion solutions. Am J Kidney Dis. 2013;62(1):20–2.

    Article  PubMed  Google Scholar 

  9. Regolisti G, Antoniotti R, Fani F, et al. Treatment of metformin intoxication complicated by lactic acidosis and acute kidney injury: the role of prolonged intermittent hemodialysis. Am J Kidney Dis. 2017;70(2):290–6.

    Article  CAS  PubMed  Google Scholar 

  10. Ting SM, Ching I, Nair H, et al. Early and late presentations of ethylene glycol poisoning. Am J Kidney Dis. 2009;53(6):1091–7.

    Article  PubMed  Google Scholar 

  11. Kraut JA, Madias NE. Lactic acidosis. N Engl J Med. 2014;371(24):2309–19.

    Article  PubMed  CAS  Google Scholar 

  12. Jung B, Rimmele T, Le Goff C, et al. Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. A prospective, multiple-center study. Crit Care. 2011;15(5):R238. https://doi.org/10.1186/cc10487.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kraut JA, Madias NE. Sodium bicarbonate for severe metabolic acidaemia. Lancet. 2018;392(10141):3–4.

    Article  PubMed  Google Scholar 

  14. Jaber S, Paugam C, Futier E. Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet. 2018;392(10141):31–40.

    Article  CAS  PubMed  Google Scholar 

  15. Huber L, Gennari FJ. Severe metabolic alkalosis in a hemodialysis patient. Am J Kidney Dis. 2011;58(1):144–9.

    Article  PubMed  Google Scholar 

  16. Ryuge A, Matsui K, Shibagaki Y. Hyponatremic chloride-depletion metabolic alkalosis successfully treated with high cation-gap amino acid. Intern Med. 2016;55(13):1765–7.

    Article  PubMed  Google Scholar 

  17. Jacobi J, Schnellhardt S, Opgenoorth M, et al. Severe metabolic alkalosis and recurrent acute on chronic kidney injury in a patient with Crohn’s disease. BMC Nephrol. 2010;11:6. https://doi.org/10.1186/1471-2369-11-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peixoto AJ, Alpern RJ. Treatment of severe metabolic alkalosis in a patient with congestive heart failure. Am J Kidney Dis. 2013;61(5):822–7.

    Article  PubMed  Google Scholar 

  19. Szerlip HM, Weiss J, Singer I. Profound hyperkalemia without electrocardiographic manifestations. Am J Kidney Dis. 1986;7(6):461–5.

    Article  CAS  PubMed  Google Scholar 

  20. Kosiborod M, Peacock WF, Packham DK. Sodium zirconium cyclosilicate for urgent therapy of severe hyperkalemia. N Engl J Med. 2015;372(16):1577–8.

    Article  PubMed  Google Scholar 

  21. Alexandridis G, Liberopoulos E, Elisaf M. Aminoglycoside-induced reversible tubular dysfunction. Pharmacology. 2003;67(3):118–20.

    Article  CAS  PubMed  Google Scholar 

  22. Blachley JD, Hill JB. Renal and electrolyte disturbances associated with cisplatin. Ann Intern Med. 1981;95(5):628–32.

    Article  CAS  PubMed  Google Scholar 

  23. Zietse R, Zoutendijk R, Hoorn EJ. Fluid, electrolyte and acid-base disorders associated with antibiotic therapy. Nat Rev Nephrol. 2009;5(4):193–202.

    Article  CAS  PubMed  Google Scholar 

  24. Yessayan L, Yee J, Frinak S, et al. Continuous renal replacement therapy for the management of acid-base and electrolyte imbalances in acute kidney injury. Adv Chronic Kidney Dis. 2016;23(3):203–10.

    Article  PubMed  Google Scholar 

  25. Goyal A, Spertus JA, Gosch K, et al. Serum potassium levels and mortality in acute myocardial infarction. JAMA. 2012;307(2):157–64.

    Article  CAS  PubMed  Google Scholar 

  26. Villamil MF, Deland EC, Henney RP, et al. Anion effects on cation movements during correction of potassium depletion. Am J Physiol. 1975;229(1):161–6.

    Article  CAS  PubMed  Google Scholar 

  27. Asmar A, Mohandas R, Wingo CS. A physiologic-based approach to the treatment of a patient with hypokalemia. Am J Kidney Dis. 2012;60(3):492–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Christov M, Neyra JA, Gupta S, et al. Fibroblast growth factor 23 and klotho in AKI. Semin Nephrol. 2019;39(1):57–75.

    Article  CAS  PubMed  Google Scholar 

  29. Leaf DE, Siew ED, Eisenga MF, et al. Fibroblast growth factor 23 associates with death in critically ill patients. Clin J Am Soc Nephrol. 2018;13(4):531–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vetter T, Lohse MJ. Magnesium and the parathyroid. Curr Opin Nephrol Hypertens. 2002;11(4):403–10.

    Article  PubMed  Google Scholar 

  31. Freitag JJ, Martin KJ, Conrades MB, et al. Evidence for skeletal resistance to parathyroid hormone in magnesium deficiency. Studies in isolated perfused bone. J Clin Invest. 1979;64(5):1238–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leaf DE, Christov M. Dysregulated mineral metabolism in AKI. Semin Nephrol. 2019;39(1):41–56.

    Article  CAS  PubMed  Google Scholar 

  33. Rivara MB, Ravel V, Kalantar-Zadeh K, et al. Uncorrected and albumin-corrected calcium, phosphorus, and mortality in patients undergoing maintenance dialysis. J Am Soc Nephrol. 2015;26(7):1671–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oberleithner H, Greger R, Lang F. The effect of respiratory and metabolic acid-base changes on ionized calcium concentration: in vivo and in vitro experiments in man and rat. Eur J Clin Invest. 1982;12(6):451–5.

    Article  CAS  PubMed  Google Scholar 

  35. Ladenson JH, Lewis JW, McDonald JM, et al. Relationship of free and total calcium in hypercalcemic conditions. J Clin Endocrinol Metab. 1979;48(3):393–7.

    Article  CAS  PubMed  Google Scholar 

  36. Dzik WH, Kirkley SA. Citrate toxicity during massive blood transfusion. Transfus Med Rev. 1988;2(2):76–94.

    Article  CAS  PubMed  Google Scholar 

  37. Afshinnia F, Belanger K, Palevsky PM, et al. Effect of ionized serum calcium on outcomes in acute kidney injury needing renal replacement therapy: secondary analysis of the acute renal failure trial network study. Ren Fail. 2013;35(10):1310–8.

    Article  PubMed  Google Scholar 

  38. LeGrand SB, Leskuski D, Zama I. Narrative review: furosemide for hypercalcemia: an unproven yet common practice. Ann Intern Med. 2008;149(4):259–63.

    Article  PubMed  Google Scholar 

  39. Uehara A, Yazawa M, Kawata A, et al. Denosumab for treatment of immobilization-related hypercalcemia in a patient with end-stage renal disease. CEN Case Rep. 2017;6(1):111–4.

    Article  PubMed  PubMed Central  Google Scholar 

  40. O’Connor LR, Klein KL, Bethune JE. Hyperphosphatemia in lactic acidosis. N Engl J Med. 1977;297(13):707–9.

    Article  PubMed  Google Scholar 

  41. Kebler R, McDonald FD, Cadnapaphornchai P. Dynamic changes in serum phosphorus levels in diabetic ketoacidosis. Am J Med. 1985;79(5):571–6.

    Article  CAS  PubMed  Google Scholar 

  42. Block GA, Klassen PS, Lazarus JM, et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15(8):2208–18.

    Article  CAS  PubMed  Google Scholar 

  43. Thongprayoon C, Cheungpasitporn W, Mao MA, et al. Admission hyperphosphatemia increases the risk of acute kidney injury in hospitalized patients. J Nephrol. 2018;31(2):241–7.

    Article  CAS  PubMed  Google Scholar 

  44. Jung SY, Kwon J, Park S, et al. Phosphate is a potential biomarker of disease severity and predicts adverse outcomes in acute kidney injury patients undergoing continuous renal replacement therapy. PLoS One. 2018;13(2):e0191290. https://doi.org/10.1371/journal.pone.0191290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Markowitz GS, Stokes MB, Radhakrishnan J, et al. Acute phosphate nephropathy following oral sodium phosphate bowel purgative: an underrecognized cause of chronic renal failure. J Am Soc Nephrol. 2005;16(11):3389–96.

    Article  CAS  PubMed  Google Scholar 

  46. Tan HK, Bellomo R, M’Pis DA, et al. Phosphatemic control during acute renal failure: intermittent hemodialysis versus continuous hemodiafiltration. Int J Artif Organs. 2001;24(4):186–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugo Shibagaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Uehara, A., Shibagaki, Y. (2020). Complication of Homeostasis (Electrolytes and Acid-Base). In: Terada, Y., Wada, T., Doi, K. (eds) Acute Kidney Injury and Regenerative Medicine . Springer, Singapore. https://doi.org/10.1007/978-981-15-1108-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1108-0_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1107-3

  • Online ISBN: 978-981-15-1108-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics