Skip to main content

Pharmacogenomics of Thiopurine-Induced Toxicity in Children

  • Chapter
  • First Online:
'Essentials of Cancer Genomic, Computational Approaches and Precision Medicine

Abstract

Thiopurine drugs play an important role in the treatment of acute lymphoblastic leukemia by inhibiting the proliferation of cell. It is done by blocking various pathways of nucleic acid synthesis. Because of this typical property of these drugs, they are used in cancer treatment. Mercaptopurine (6-MP) and thioguanine (6-TG) act synergistically in inhibiting the synthesis of purine, ultimately inhibiting DNA synthesis. Incorporation of 6-TGN (thioguanine nucleotides) into DNA is responsible for anticancer activity of thiopurine drugs. Two-thirds of children suffering from acute lymphoblastic leukemia (ALL) can be cured by using 6-MP. Thiopurine drugs concentration in the body is regulated by an enzyme called thiopurine S-methyltransferase (TPMT). Studies on red blood cells suggest that TPMT activity is trimodal in its distribution. Ninety percent of individuals possess normal TPMT activity, but in the remaining 10% of individuals, low TPMT activity is observed. This is because of presence of genetic polymorphism in TPMT gene. Metabolism of thiopurine drugs in our body depends upon the genetic variant of TPMT gene we possess. Before initiating thiopurine drug therapy, it is necessary to determine TPMT status of the patient. Usually TPMT genotyping is used for this purpose. Standard dose of thiopurine drugs is used for patients with high TPMT enzyme activity. In patients, exhibiting low TPMT activity dosage of thiopurine drugs is reduced, or an alternate therapy is considered to avoid adverse drug reactions like myelosuppression, hematologic toxicity, and hypoplasia of the bone marrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’Connor A, Qasim A, O’Moráin CA (2010) The long-term risk of continuous immunosuppression using thioguanines in inflammatory bowel disease. Ther Adv Chronic Dis 1:7–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Pavlovic S, Zukic B, Nikcevic G (2012) Pharmacogenomics of thiopurine S-methyltransferase: clinical applicability of genetic variants. In: Clinical applications of pharmacogenetics. IntechOpen, Rijeka

    Google Scholar 

  3. Coulthard S, Hogarth L (2005) The thiopurines: an update. Investig New Drugs 23:523–532

    Article  CAS  Google Scholar 

  4. Elion GB (1986) Historical background of 6-mercaptopurine. Toxicol Ind Health 2:1–9

    Article  CAS  PubMed  Google Scholar 

  5. Weinshilboum RM, Sladek SL (1980) Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 32:651–662

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Abaji R, Krajinovic M (2017) Thiopurine S-methyltransferase polymorphisms in acute lymphoblastic leukemia, inflammatory bowel disease and autoimmune disorders: influence on treatment response. Pharmgenomics Pers Med 10:143–156

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Konidari A, Matary WE (2014) Use of thiopurines in inflammatory bowel disease: safety issues. World J Gastrointest Pharmacol Ther 5:63–76

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sahasranaman S, Howard D, Roy S (2008) Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol 64:753–767

    Article  CAS  PubMed  Google Scholar 

  9. Zhou S (2006) Clinical pharmacogenomics of thiopurine S-methyltransferase. Curr Clin Pharmacol 1:119–128

    Article  CAS  PubMed  Google Scholar 

  10. Katzung BG (2004) Basic and clinical pharmacology, 9th edn. McGraw-Hill, London

    Google Scholar 

  11. Lennard L (1992) The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 43:329–339

    Article  CAS  PubMed  Google Scholar 

  12. Bertino JR (1991) Improving the curability of acute leukemia: pharmacologic approaches. Semin Hematol 28:9–11

    CAS  PubMed  Google Scholar 

  13. Dervieux T, Blanco JG, Krynetski EY et al (2001) Differing contribution of thiopurine methyltransferase to mercaptopurine versus thioguanine effects in human leukemic cells. Cancer Res 61:5810–5816

    CAS  PubMed  Google Scholar 

  14. Tay BS, Lilley RM, Murray AW et al (1969) Inhibition of phosphoribosyl pyrophosphate amidotransferase from Ehrlich ascites-tumour cells by thiopurine nucleotides. Biochem Pharmacol 18:936–938

    Article  CAS  PubMed  Google Scholar 

  15. Christie NT, Drake S, Meyn RE et al (1984) 6-Thioguanine-induced DNA damage as a determinant of cytotoxicity in cultured Chinese hamster ovary cells. Cancer Res 44:3665–3671

    CAS  PubMed  Google Scholar 

  16. Pan BF, Nelson JA (1990) Characterization of the DNA damage in 6-thioguanine-treated cells. Biochem Pharmacol 40:1063–1069

    Article  CAS  PubMed  Google Scholar 

  17. Bodell WJ (1991) Molecular dosimetry of sister chromatid exchange induction in 9L cells treated with 6-thioguanine. Mutagenesis 6:175–177

    Article  CAS  PubMed  Google Scholar 

  18. Maybaum J, Mandel HG (1983) Unilateral chromatid damage: a new basis for 6-thioguanine cytotoxicity. Cancer Res 43:3852–3856

    CAS  PubMed  Google Scholar 

  19. Maybaum J, Mandel HG (1981) Differential chromatid damage induced by 6-thioguanine in CHO cells. Exp Cell Res 135:465–468

    Article  CAS  PubMed  Google Scholar 

  20. Karran P, Attard N (2008) Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer 8:24

    Article  CAS  PubMed  Google Scholar 

  21. Remy CN (1963) Metabolism of thiopyrimidines and thiopurines. S-Methylation with S-adenosylmethionine transmethylase and catabolism in mammalian tissues. J Biol Chem 238:1078–1084

    CAS  PubMed  Google Scholar 

  22. Van Loon J, Weinshilboum RM (1987) Human lymphocyte thiopurine methyltransferase pharmacogenetics: effect of phenotype on 6-mercaptopurine-induced inhibition of mitogen stimulation. J Pharmacol Exp Ther 242:21–26

    PubMed  Google Scholar 

  23. Gearry RB, Barclay ML, Burt MJ et al (2003) Thiopurine S-methyltransferase (TPMT) genotype does not predict adverse drug reactions to thiopurine drugs in patients with inflammatory bowel disease. Aliment Pharmacol Ther 18:395–400

    Article  CAS  PubMed  Google Scholar 

  24. Paugh SW, Stocco G, Evans WE (2010) Pharmacogenomics in pediatric leukemia. Curr Opin Pediatr 22:703–710

    Article  PubMed  PubMed Central  Google Scholar 

  25. Weinshilboum RM, Raymond FA, Pazmino PA (1978) Human erythrocyte thiopurine methyltransferase: radiochemical microassay and biochemical properties. Clin Chim Acta 85:323–333

    Article  CAS  PubMed  Google Scholar 

  26. Zeglam HB, Benhamer A, Aboud A et al (2015) Polymorphisms of the thiopurine S-methyltransferase gene among the Libyan population. Libyan J Med 10:27053

    Article  PubMed  Google Scholar 

  27. Szumlanski C, Otterness D, Her C et al (1996) Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol 15:17–30

    Article  CAS  PubMed  Google Scholar 

  28. Ando M, Ando Y, Hasegawa Y et al (2001) Genetic polymorphisms of thiopurine S-methyltransferase and 6-mercaptopurine toxicity in Japanese children with acute lymphoblastic leukaemia. Pharmacogenetics 11:269–273

    Article  CAS  PubMed  Google Scholar 

  29. Elion GB (1989) The purine path to chemotherapy. Science (New York, NY) 244:41–47

    Article  CAS  Google Scholar 

  30. Lennard L, Van Loon JA, Weinshilboum RM (1989) Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther 46:149–154

    Article  CAS  PubMed  Google Scholar 

  31. McLeod HL, Miller DR, Evans WE (1993) Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet 341:1151

    Article  CAS  PubMed  Google Scholar 

  32. Relling MV, Gardner EE, Sandborn WJ et al (2011) Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther 89:387–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmiegelow K, Forestier E, Kristinsson J et al (2009) Thiopurine methyltransferase activity is related to the risk of relapse of childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Leukemia 23:557–564

    Article  CAS  PubMed  Google Scholar 

  34. Gurwitz D, Rodríguez-Antona C, Payne K et al (2009) Improving pharmacovigilance in Europe: TPMT genotyping and phenotyping in the UK and Spain. Eur J Hum Genet 17:991–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Relling MV, Altman RB, Goetz MP et al (2010) Clinical implementation of pharmacogenomics: overcoming genetic exceptionalism. Lancet Oncol 11:507–509

    Article  PubMed  PubMed Central  Google Scholar 

  36. Krynetski EY, Schuetz JD, Galpin AJ et al (1995) A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc Natl Acad Sci U S A 92:949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng Q, Vannaprasaht S, Peng Y et al (2010) Thiopurine S-methyltransferase pharmacogenetics: functional characterization of a novel rapidly degraded variant allozyme. Biochem Pharmacol 79:1053–1061

    Article  CAS  PubMed  Google Scholar 

  38. Tai HL, Krynetski EY, Yates CR et al (1996) Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet 58:694–702

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Loennechen T, Yates CR, Fessing MY et al (1998) Isolation of a human thiopurine S-methyltransferase (TPMT) complementary DNA with a single nucleotide transition A719G (TPMT∗3C) and its association with loss of TPMT protein and catalytic activity in humans. Clin Pharmacol Ther 64:46–51

    Article  CAS  PubMed  Google Scholar 

  40. Otterness DM, Szumlanski CL, Wood TC et al (1998) Human thiopurine methyltransferase pharmacogenetics. Kindred with a terminal exon splice junction mutation that results in loss of activity. J Clin Invest 101:1036–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang L, Weinshilboum R (2006) Thiopurine S-methyltransferase pharmacogenetics: insights, challenges and future directions. Oncogene 25:1629–1638

    Article  CAS  PubMed  Google Scholar 

  42. Tai HL, Krynetski EY, Schuetz EG et al (1997) Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT∗3A, TPMT∗2): mechanisms for the genetic polymorphism of TPMT activity. Proc Natl Acad Sci U S A 94:6444–6449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Otterness D, Szumlanski C, Lennard L et al (1997) Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin Pharmacol Ther 62:60–73

    Article  CAS  PubMed  Google Scholar 

  44. Spire-Vayron de la Moureyre C, Debuysere H, Sabbagh N et al (1998) Detection of known and new mutations in the thiopurine S-methyltransferase gene by single-strand conformation polymorphism analysis. Hum Mutat 12:177–185

    Article  CAS  PubMed  Google Scholar 

  45. Hon YY, Fessing MY, Pui CH et al (1999) Polymorphism of the thiopurine S-methyltransferase gene in African-Americans. Hum Mol Genet 8:371–376

    Article  CAS  PubMed  Google Scholar 

  46. Wang L, Sullivan W, Toft D et al (2003) Thiopurine S-methyltransferase pharmacogenetics: chaperone protein association and allozyme degradation. Pharmacogenetics 13:555–564

    Article  CAS  PubMed  Google Scholar 

  47. Campbell S, Ghosh S (2001) Is neutropenia required for effective maintenance of remission during azathioprine therapy in inflammatory bowel disease? Eur J Gastroenterol Hepatol 13:1073–1076

    Article  CAS  PubMed  Google Scholar 

  48. Posthuma EF, Westendorp RG, van der Sluys Veer A et al (1995) Fatal infectious mononucleosis: a severe complication in the treatment of Crohn’s disease with azathioprine. Gut 36:311–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Connell WR, Kamm MA, Ritchie JK et al (1993) Bone marrow toxicity caused by azathioprine in inflammatory bowel disease: 27 years of experience. Gut 34:1081–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schutz E, Gummert J, Mohr F et al (1993) Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet 341:436

    Article  CAS  PubMed  Google Scholar 

  51. Schaeffeler E, Fischer C, Brockmeier D et al (2004) Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 14:407–417

    Article  CAS  PubMed  Google Scholar 

  52. Swen JJ, Nijenhuis M, de Boer A et al (2011) Pharmacogenetics: from bench to byte—an update of guidelines. Clin Pharmacol Ther 89:662–673

    Article  CAS  PubMed  Google Scholar 

  53. Relling MV, Hancock ML, Rivera GK et al (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 91:2001–2008

    Article  CAS  PubMed  Google Scholar 

  54. Raaschou-Nielsen O, Reynolds P (2006) Air pollution and childhood cancer: a review of the epidemiological literature. Int J Cancer 118:2920–2929

    Article  CAS  PubMed  Google Scholar 

  55. Belson M, Kingsley B, Holmes A (2007) Risk factors for acute leukemia in children: a review. Environ Health Perspect 115:138–145

    Article  CAS  PubMed  Google Scholar 

  56. Linabery AM, Ross JA (2008) Trends in childhood cancer incidence in the U.S. (1992-2004). Cancer 112:416–432

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hina Salahuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salahuddin, H., Tahir, M.J.I. (2020). Pharmacogenomics of Thiopurine-Induced Toxicity in Children. In: Masood, N., Shakil Malik, S. (eds) 'Essentials of Cancer Genomic, Computational Approaches and Precision Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-1067-0_18

Download citation

Publish with us

Policies and ethics