Skip to main content

Pharmacogenomics of Cisplatin-Induced Toxicity in Children

  • Chapter
  • First Online:
'Essentials of Cancer Genomic, Computational Approaches and Precision Medicine

Abstract

Cisplatin is a widely used chemotherapeutics agent used to treat cancers in all age groups. It induces apoptosis but is deactivated by some proteins that results in adverse side effects. It has been found to produce toxicity in children. Though it has a high cure rate, still the toxicity caused by cisplatin cannot be neglected. Cisplatin-induced ototoxicity and nephrotoxicity are major consequences of its side effects. It produces GST polymorphisms, megalin SNPs, thiopurine S-methyltransferase, and catechol-O-methyltransferase variants. An elevated ROS level is evident in all affected by cisplatin-induced ototoxicity. Similarly, different SNPs related to nephrotoxicity have also been reported. Comprehensive studies of other cisplatin-induced toxicity are yet to be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lippert B (ed) (1999) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley, Zürich, pp 3–27

    Google Scholar 

  2. Rosenberg B, Van Camp L, Krigas T (1965) Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205:698–699. https://doi.org/10.1038/205698a0

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg B, Van Camp L, Grimley EB, Thomson AJ (1967) The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum(IV) complexes. J Biol Chem 242:1347–1352

    CAS  PubMed  Google Scholar 

  4. Rosenberg B, Renshaw E, Vancamp L et al (1967) Platinum-induced filamentous growth in Escherichia coli. J Bacteriol 93:716–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosenberg B, Vancamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386. https://doi.org/10.1038/222385a0

    Article  CAS  PubMed  Google Scholar 

  6. Rosenberg B, VanCamp L (1970) The successful regression of large solid sarcoma 180 tumors by platinum compounds. Cancer Res 30:1799–1802

    CAS  PubMed  Google Scholar 

  7. Peyrone (1845) Cisplatin. M Ann 51:15

    Google Scholar 

  8. Mellor DP (1943) The stereochemistry of square complexes. Chem Rev 33:137–183. https://doi.org/10.1021/cr60105a003

    Article  CAS  Google Scholar 

  9. Kauffman G (1997) B Plat Met Rev 41:34–40

    CAS  Google Scholar 

  10. Werner A (1893) Beitrag zur Konstitution anorganischer Verbindungen. Z Anorg Chem 3:267–330. https://doi.org/10.1002/zaac.18930030136

    Article  Google Scholar 

  11. Dhara SC (1970) Indian J Chem 8:193–134

    Google Scholar 

  12. Basolo F, Pearson RG (1967) Mechanisms of inorganic reactions: a study of metal complexes in solution. Wiley, New York, pp 351–453

    Google Scholar 

  13. Natile G, Coluccia M (2001) Coord Chem Rev 216–217:383410

    Google Scholar 

  14. Kauffman GB, Cowan DO, Slusarczuk G, Kirschner S (2007) Cis- and trans-Dichlorodiammineplatinum(II). In: Kleinberg J (ed) Inorganic syntheses. Wiley, Hoboken, pp 239–245

    Chapter  Google Scholar 

  15. Sigel A, Sigel H (eds) (2004) Metal ions and their complexes in medication. Marcel Dekker, New York

    Google Scholar 

  16. Vollano JF, Al-Baker S, Dabrowiak JC, Schurig JE (1987) J Med Chem 30:716–719

    Article  CAS  PubMed  Google Scholar 

  17. Ellis L, Er H, Hambley T (1995) The influence of the axial ligands of a series of platinum(IV) anti-cancer complexes on their reduction to platinum(II) and reaction with DNA. Aust J Chem 48:793–806. https://doi.org/10.1071/CH9950793

    Article  CAS  Google Scholar 

  18. Galanski M, Keppler BK (1996) Carboxylation of dihydroxoplatinum(IV) complexes via a new synthetic pathway. Inorg Chem 35:1709–1711. https://doi.org/10.1021/ic9509490

    Article  CAS  PubMed  Google Scholar 

  19. Ivanov AI, Christodoulou J, Parkinson JA et al (1998) Cisplatin binding sites on human albumin. J Biol Chem 273:14721–14730. https://doi.org/10.1074/jbc.273.24.14721

    Article  CAS  PubMed  Google Scholar 

  20. Silvestru C (1994) Metal complexes in cancer chemotherapy. B. K. Keppler (ed) VCH, Weinheim and New York, 1993, 429 pp. DM 196, ISBN 3-527-28425-7 (VCH, Weinheim); ISBN 1-56081-216-8 (VCH, New York). Appl Organomet Chem 8:499–500. https://doi.org/10.1002/aoc.590080511

    Article  Google Scholar 

  21. DeConti RC, Toftness BR, Lange RC, Creasey WA (1973) Clinical and pharmacological studies with cis-diamminedichloroplatinum (II). Cancer Res 33:1310–1315

    CAS  PubMed  Google Scholar 

  22. Kelland LR (2000) Preclinical perspectives on platinum resistance. Drugs 59(Suppl 4):1–8. https://doi.org/10.2165/00003495-200059004-00001

    Article  CAS  PubMed  Google Scholar 

  23. Desoize B (2002) Cancer and metals and metal compounds: part I--carcinogenesis. Crit Rev Oncol Hematol 42:1–3

    Article  PubMed  Google Scholar 

  24. Rybak LP, Mukherjea D, Jajoo S, Ramkumar V (2009) Cisplatin ototoxicity and protection: clinical and experimental studies. Tohoku J Exp Med 219:177–186. https://doi.org/10.1620/tjem.219.177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mukherjea D, Rybak LP, Sheehan KE et al (2011) The design and screening of drugs to prevent acquired sensorineural hearing loss. Expert Opin Drug Discovery 6:491–505. https://doi.org/10.1517/17460441.2011.562887

    Article  CAS  Google Scholar 

  26. Tauris J, Christensen EI, Nykjaer A et al (2009) Cubilin and megalin co-localize in the neonatal inner ear. Audiol Neurootol 14:267–278. https://doi.org/10.1159/000199446

    Article  CAS  PubMed  Google Scholar 

  27. Barnham KJ, Djuran MI, Murdoch P del S et al (1996) Ring-opened adducts of the anticancer drug carboplatin with sulfur amino acids. Inorg Chem 35:1065–1072. https://doi.org/10.1021/ic950973d

    Article  CAS  PubMed  Google Scholar 

  28. Lempers ELM, Reedijk J (1991) Adv Inorg Chem 37:175–217

    Article  CAS  Google Scholar 

  29. Andrews PA, Wung WE, Howell SB (1984) A high-performance liquid chromatographic assay with improved selectivity for cisplatin and active platinum (II) complexes in plasma ultrafiltrate. Anal Biochem 143:46–56. https://doi.org/10.1016/0003-2697(84)90556-6

    Article  CAS  PubMed  Google Scholar 

  30. Dolman RC, Deacon GB, Hambley TW (2002) Studies of the binding of a series of platinum(IV) complexes to plasma proteins. J Inorg Biochem 88:260–267. https://doi.org/10.1016/S0162-0134(01)00360-9

    Article  CAS  PubMed  Google Scholar 

  31. Borch RF, Pleasants ME (1979) Inhibition of cis-platinum nephrotoxicity by diethyldithiocarbamate rescue in a rat model. Proc Natl Acad Sci 76:6611–6614. https://doi.org/10.1073/pnas.76.12.6611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gately DP, Howell SB (1993) Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer 67:1171–1176. https://doi.org/10.1038/bjc.1993.221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci 99:14298–14302. https://doi.org/10.1073/pnas.162491399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davies MS, Berners-Price SJ, Hambley TW (2000) Slowing of cisplatin aquation in the presence of DNA but not in the presence of phosphate: improved understanding of sequence selectivity and the roles of monoaquated and diaquated species in the binding of cisplatin to DNA. Inorg Chem 39:5603–5613. https://doi.org/10.1021/ic000847w

    Article  CAS  PubMed  Google Scholar 

  35. Lippert B (ed) (1999) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley, Zürich, pp 183–206

    Google Scholar 

  36. Lippert B (ed) (1999) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley, Zürich, pp 207–222

    Google Scholar 

  37. Lippert B (ed) (1999) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Wiley, Zürich, pp 223–246

    Google Scholar 

  38. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467–2498

    Article  CAS  PubMed  Google Scholar 

  39. Hambley TW (2001) Platinum binding to DNA: structural controls and consequences. J Chem Soc Dalton Trans 2001:2711–2718. https://doi.org/10.1039/B105406F

    Article  Google Scholar 

  40. Cohen GL, Ledner JA, Bauer WR, Ushay HM, Caravana C, Lippard SJ (1980) J Am Chem Sot 102:2487–2488

    Article  CAS  Google Scholar 

  41. Fuertes MA, Castilla J, Alonso C, Pérez JM (2002) Novel concepts in the development of platinum antitumor drugs. Curr Med Chem Anticancer Agents 2:539–551

    Article  CAS  PubMed  Google Scholar 

  42. Mizuta K, Saito A, Watanabe T et al (1999) Ultrastructural localization of megalin in the rat cochlear duct. Hear Res 129:83–91. https://doi.org/10.1016/s0378-5955(98)00221-4

    Article  CAS  PubMed  Google Scholar 

  43. Riedemann L, Lanvers C, Deuster D et al (2008) Megalin genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Pharmacogenomics J 8:23–28. https://doi.org/10.1038/sj.tpj.6500455

    Article  CAS  PubMed  Google Scholar 

  44. Ross CJD, Katzov-Eckert H, Dubé M-P et al (2009) Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 41:1345–1349. https://doi.org/10.1038/ng.478

    Article  CAS  PubMed  Google Scholar 

  45. el Barbary A, Altschuler RA, Schacht J (1993) Glutathione S-transferases in the organ of Corti of the rat: enzymatic activity, subunit composition and immunohistochemical localization. Hear Res 71:80–90. https://doi.org/10.1016/0378-5955(93)90023-t

    Article  PubMed  Google Scholar 

  46. Touliatos JS, Neitzel L, Whitworth C et al (2000) Effect of cisplatin on the expression of glutathione-S-transferase in the cochlea of the rat. Eur Arch Otorhinolaryngol 257:6–9

    Article  CAS  PubMed  Google Scholar 

  47. Fujimura T, Suzuki H, Udaka T et al (2008) Immunoreactivities for glutathione S-transferases and glutathione peroxidase in the lateral wall of pigmented and albino guinea pig cochlea. Med Mol Morphol 41:139–144. https://doi.org/10.1007/s00795-008-0405-z

    Article  CAS  PubMed  Google Scholar 

  48. Peters U, Preisler-Adams S, Hebeisen A et al (2000) Glutathione S-transferase genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Anti-Cancer Drugs 11:639–643

    Article  CAS  PubMed  Google Scholar 

  49. Oldenburg J, Kraggerud SM, Cvancarova M et al (2007) Cisplatin-induced long-term hearing impairment is associated with specific glutathione s-transferase genotypes in testicular cancer survivors. J Clin Oncol 25:708–714. https://doi.org/10.1200/JCO.2006.08.9599

    Article  CAS  PubMed  Google Scholar 

  50. Pussegoda KA (2010) Genetic variants associated with cisplatin-induced hearing loss. Clin Genet 78:33–35. https://doi.org/10.1111/j.1399-0004.2010.01414_2.x

    Article  CAS  PubMed  Google Scholar 

  51. Peters U, Preisler-Adams S, Lanvers-Kaminsky C et al (2003) Sequence variations of mitochondrial DNA and individual sensitivity to the ototoxic effect of cisplatin. Anticancer Res 23:1249–1255

    CAS  PubMed  Google Scholar 

  52. Caronia D, Patiño-García A, Milne RL et al (2009) Common variations in ERCC2 are associated with response to cisplatin chemotherapy and clinical outcome in osteosarcoma patients. Pharmacogenomics J 9:347–353. https://doi.org/10.1038/tpj.2009.19

    Article  CAS  PubMed  Google Scholar 

  53. Zazuli Z, Vijverberg S, Slob E et al (2018) Genetic variations and cisplatin nephrotoxicity: a systematic review. Front Pharmacol 9:1111. https://doi.org/10.3389/fphar.2018.01111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hina Salahuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasheed, A., Ghaffar, M., Salahuddin, H. (2020). Pharmacogenomics of Cisplatin-Induced Toxicity in Children. In: Masood, N., Shakil Malik, S. (eds) 'Essentials of Cancer Genomic, Computational Approaches and Precision Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-15-1067-0_16

Download citation

Publish with us

Policies and ethics