Skip to main content

Targeting Protein Neddylation for Cancer Therapy

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1217))

Abstract

Neddylation is a posttranslational modification that conjugates a ubiquitin-like protein NEDD8 to substrate proteins. The best-characterized substrates of neddylation are the cullin subunits of cullin-RING E3 ubiquitin ligase complexes (CRLs). CRLs as the largest family of E3 ubiquitin ligases control many important biological processes, including tumorigenesis, through promoting ubiquitylation and subsequent degradation of a variety of key regulatory proteins. The process of protein neddylation is overactivated in multiple types of human cancers, providing a sound rationale as an attractive anticancer therapeutic strategy, evidenced by the development of the NEDD8-activating enzyme (NAE) inhibitor MLN4924 (also known as pevonedistat). Recently, increasing evidence strongly indicates that neddylation inhibition by MLN4924 exerts anticancer effects mainly by triggering cell apoptosis, senescence, and autophagy and causing angiogenesis suppression, inflammatory responses, and chemo-/radiosensitization in a context-dependent manner. Here, we briefly summarize the latest progresses in this field, focusing on the preclinical studies to validate neddylation modification as a promising anticancer target.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

4E-BP1:

Eukaryotic translation initiation factor 4E-binding protein 1

AICD:

APP intracellular domain

APPBP1:

Amyloid beta precursor protein binding protein 1

ATF4:

Activating transcription factor 4

BAX:

BCL2-associated X, apoptosis regulator

BCA3:

Breast cancer-associated protein 3

BIK:

BCL2 Interacting killer

CAM:

Chorioallantoic membrane

c-CBL:

Casitas B-lineage lymphoma

CDT1/2:

Chromatin licensing and DNA replication factor 1/2

c-FLIP:

CASP8 and FADD-like apoptosis regulator

CRLs:

Cullin-RING ligases

CSN:

COP9 signalosome complex

DCN1:

Defective in cullin neddylation 1

DCNL:

DCN1-like protein

Deptor:

DEP domain-containing mTOR-interacting protein

DR5:

Death receptor 5

E2F-1:

E2F transcriptional factor 1

EGFR:

Epidermal growth factor receptor

FANCD2:

FA complementation group D2

FBXO11:

F-box protein 11

HIF1α/2α:

Hypoxia-inducible factor 1α/2α

HUR:

Hu antigen R

HUVECs:

Human umbilical vein endothelial cells

IAPs:

Inhibitors of apoptosis

IL-6:

Interleukin 6

MAPK:

Mitogen-activated protein kinase

MDM2:

Murine double minute 2

mTOR:

Mammalian target of rapamycin

NAC:

N-acetyl cysteine

NAE1:

NEDD8-activating enzyme E1 subunit 1

NAEβ:

NEDD8-activating enzyme E1 subunit β

NEDD8:

Neural precursor cell expressed, developmentally downregulated 8

NEDP1:

NEDD8-specific protease 1

NF-κB:

Nuclear factor-κB

ORC1:

Origin recognition complex subunit 1

PAMPs:

Pathogen-associated molecular patterns

PfUCH54:

54-kDa plasmodium falciparum ubiquitin C-terminal hydrolase

PINK1:

PTEN-induced putative kinase 11

pIκB:

p-inhibitor of nuclear factor kappa B

PONY:

Potentiating neddylation

pVHL:

p-von Hippel-Lindau

RBX1/2:

RING box protein 1/2

RhoA:

Ras homolog family member A

RING:

Really interesting new gene

RNF111:

Ring finger protein 111

ROS:

Reactive oxygen species

S6K1:

Ribosomal protein S6 kinase B1

SKP1/2:

S-phase kinase-associated protein 1/2

SMURF1:

SMAD-specific E3 ubiquitin protein ligase 1

TGFβ-RII:

Transforming growth factor β type II receptor

TNFα:

Tumor necrosis factor α

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

TRIM40:

Tripartite motif containing 40

TSC1:

TSC complex subunit 1

UBA3:

Ubiquitin-like modifier activating enzyme 3

UBC12:

Ubiquitin-conjugating enzyme 12

UBE2F:

Ubiquitin-conjugating enzyme E2F

UBE2M:

Ubiquitin-conjugating enzyme E2M

UCH-L1/3:

Ubiquitin carboxyl-terminal esterase L1/3

USP21:

Ubiquitin-specific peptidase 21

VEGF:

Vascular endothelial growth factor

WEE1:

WEE1 G2 checkpoint kinase 1

β-Trcp:

β-Transducin repeat containing E3 ubiquitin protein ligase

References

  • Abdelmohsen K, Gorospe M (2010) Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip Rev RNA 1(2):214–229

    Article  CAS  PubMed  Google Scholar 

  • Abida WM et al (2007) FBXO11 promotes the Neddylation of p53 and inhibits its transcriptional activity. J Biol Chem 282(3):1797–1804

    Article  CAS  PubMed  Google Scholar 

  • Barbier-Torres L et al (2015) Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer. Oncotarget 6(4):2509–2523

    Article  PubMed  Google Scholar 

  • Bhatia S et al (2016) A phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with metastatic melanoma. Invest New Drugs 34(4):439–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohnsack RN, Haas AL (2003) Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer. J Biol Chem 278(29):26823–26830

    Article  CAS  PubMed  Google Scholar 

  • Broemer M et al (2010) Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases. Mol Cell 40(5):810–822

    Article  CAS  PubMed  Google Scholar 

  • Brownell JE et al (2010) Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol Cell 37(1):102–111

    Article  CAS  PubMed  Google Scholar 

  • Chang SC, Ding JL (2014) Ubiquitination by SAG regulates macrophage survival/death and immune response during infection. Cell Death Differ 21(9):1388–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang FM et al (2012) Inhibition of neddylation represses lipopolysaccharide-induced proinflammatory cytokine production in macrophage cells. J Biol Chem 287(42):35756–35767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y et al (2009) Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell 35(6):841–855

    Article  CAS  PubMed  Google Scholar 

  • Chen P et al (2015) Synergistic inhibition of autophagy and neddylation pathways as a novel therapeutic approach for targeting liver cancer. Oncotarget 6(11):9002–9017

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen P et al (2016) Neddylation inhibition activates the extrinsic apoptosis pathway through ATF4-CHOP-DR5 axis in human esophageal cancer cells. Clin Cancer Res 22(16):4145–4157

    Article  CAS  PubMed  Google Scholar 

  • Cheng M et al (2016) Inhibition of neddylation regulates dendritic cell functions via Deptor accumulation driven mTOR inactivation. Oncotarget 7(24):35643–35654

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Q et al (2018) Neddylation contributes to CD4+ T cell-mediated protective immunity against blood-stage Plasmodium infection. PLoS Pathog 14(11):e1007440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coleman KE et al (2017) SENP8 limits aberrant neddylation of NEDD8 pathway components to promote cullin-RING ubiquitin ligase function. Elife 6

    Google Scholar 

  • Cope GA, Deshaies RJ (2006) Targeted silencing of Jab1/Csn5 in human cells downregulates SCF activity through reduction of F-box protein levels. BMC Biochem 7:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czuczman NM et al (2016) Pevonedistat, a NEDD8-activating enzyme inhibitor, is active in mantle cell lymphoma and enhances rituximab activity in vivo. Blood 127(9):1128–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dengler MA et al (2014) Discrepant NOXA (PMAIP1) transcript and NOXA protein levels: a potential Achilles’ heel in mantle cell lymphoma. Cell Death Dis 5:e1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshaies RJ (1999) SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol 15:435–467

    Article  CAS  PubMed  Google Scholar 

  • Duan H et al (1999) SAG, a novel zinc RING finger protein that protects cells from apoptosis induced by redox agents. Mol Cell Biol 19(4):3145–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duda DM et al (2008) Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134(6):995–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Mesery M et al (2015) MLN4924 sensitizes monocytes and maturing dendritic cells for TNF-dependent and -independent necroptosis. Br J Pharmacol 172(5):1222–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Embade N et al (2012) Murine double minute 2 regulates Hu antigen R stability in human liver and colon cancer through NEDDylation. Hepatology 55(4):1237–1248

    Article  CAS  PubMed  Google Scholar 

  • Enchev RI, Schulman BA, Peter M (2015) Protein neddylation: beyond cullin-RING ligases. Nat Rev Mol Cell Biol 16(1):30–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F et al (2006) Neddylation of a breast cancer-associated protein recruits a class III histone deacetylase that represses NFkappaB-dependent transcription. Nat Cell Biol 8(10):1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Gao Q et al (2014) Neddylation pathway is up-regulated in human intrahepatic cholangiocarcinoma and serves as a potential therapeutic target. Oncotarget 5(17):7820–7832

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia K et al (2014) Nedd8-activating enzyme inhibitor MLN4924 provides synergy with mitomycin C through interactions with ATR, BRCA1/BRCA2, and chromatin dynamics pathways. Mol Cancer Ther 13(6):1625–1635

    Article  CAS  PubMed  Google Scholar 

  • Godbersen JC et al (2014) The Nedd8-activating enzyme inhibitor MLN4924 thwarts microenvironment-driven NF-kappaB activation and induces apoptosis in chronic lymphocytic leukemia B cells. Clin Cancer Res 20(6):1576–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong L, Yeh ET (1999) Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J Biol Chem 274(17):12036–12042

    Article  CAS  PubMed  Google Scholar 

  • Gu Y et al (2014) MLN4924, an NAE inhibitor, suppresses AKT and mTOR signaling via upregulation of REDD1 in human myeloma cells. Blood 123(21):3269–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guihard S et al (2012) The NEDD8 conjugation pathway regulates p53 transcriptional activity and head and neck cancer cell sensitivity to ionizing radiation. Int J Oncol 41(4):1531–1540

    Article  CAS  PubMed  Google Scholar 

  • Hammill JT et al (2018) Discovery of an orally bioavailable inhibitor of defective in cullin neddylation 1 (DCN1)-mediated cullin neddylation. J Med Chem 61(7):2694–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemelaar J et al (2004) Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Mol Cell Biol 24(1):84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill CS, Wynne J, Treisman R (1995) The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81(7):1159–1170

    Article  CAS  PubMed  Google Scholar 

  • Ho IL et al (2015) MLN4924 synergistically enhances cisplatin-induced cytotoxicity via JNK and Bcl-xL pathways in human urothelial carcinoma. Sci Rep 5:16948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J et al (2004) Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nat Cell Biol 6(10):1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Hua W et al (2015) Suppression of glioblastoma by targeting the overactivated protein neddylation pathway. Neuro Oncol 17(10):1333–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DT et al (2005) Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8’s E1. Mol Cell 17(3):341–350

    Article  CAS  PubMed  Google Scholar 

  • Huang DT et al (2009) E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol Cell 33(4):483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J et al (2015) NEDD8 inhibition overcomes CKS1B-induced drug resistance by upregulation of p21 in multiple myeloma. Clin Cancer Res 21(24):5532–5542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia L et al (2010) Validation of SAG/RBX2/ROC2 E3 ubiquitin ligase as an anticancer and radiosensitizing target. Clin Cancer Res 16(3):814–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia L, Li H, Sun Y (2011) Induction of p21-dependent senescence by an NAE inhibitor, MLN4924, as a mechanism of growth suppression. Neoplasia 13(6):561–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia X et al (2019) Neddylation inactivation facilitates FOXO3a nuclear export to suppress estrogen receptor transcription and improve fulvestrant sensitivity. Clin Cancer Res

    Google Scholar 

  • Jin HS et al (2013) Neddylation pathway regulates T-cell function by targeting an adaptor protein Shc and a protein kinase Erk signaling. Proc Natl Acad Sci U S A 110(2):624–629

    Article  CAS  PubMed  Google Scholar 

  • Jin Y et al (2018) Neddylation blockade diminishes hepatic metastasis by dampening cancer stem-like cells and angiogenesis in uveal melanoma. Clin Cancer Res 24(15):3741–3754

    Article  CAS  PubMed  Google Scholar 

  • Kamitani T et al (1997) Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem 272(45):28557–28562

    Article  CAS  PubMed  Google Scholar 

  • Kee Y et al (2012) Inhibition of the Nedd8 system sensitizes cells to DNA interstrand cross-linking agents. Mol Cancer Res 10(3):369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalife J et al (2015) Pharmacological targeting of miR-155 via the NEDD8-activating enzyme inhibitor MLN4924 (Pevonedistat) in FLT3-ITD acute myeloid leukemia. Leukemia 29(10):1981–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knorr KL et al (2015) MLN4924 induces Noxa upregulation in acute myelogenous leukemia and synergizes with Bcl-2 inhibitors. Cell Death Differ 22(12):2133–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurz T et al (2005) The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae. Nature 435(7046):1257–1261

    Article  CAS  PubMed  Google Scholar 

  • Kurz T et al (2008) Dcn1 functions as a scaffold-type E3 ligase for cullin neddylation. Mol Cell 29(1):23–35

    Article  CAS  PubMed  Google Scholar 

  • Lan H et al (2016) Neddylation inhibitor MLN4924 suppresses growth and migration of human gastric cancer cells. Sci Rep 6:24218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclerc GM et al (2016) The NEDD8-activating enzyme inhibitor pevonedistat activates the eIF2alpha and mTOR pathways inducing UPR-mediated cell death in acute lymphoblastic leukemia. Leuk Res 50:1–10

    Article  CAS  PubMed  Google Scholar 

  • Lee MR et al (2008) Inhibition of APP intracellular domain (AICD) transcriptional activity via covalent conjugation with Nedd8. Biochem Biophys Res Commun 366(4):976–981

    Article  CAS  PubMed  Google Scholar 

  • Lee MH et al (2011) Roles of COP9 signalosome in cancer. Cell Cycle 10(18):3057–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2003) The SCF(Skp2) ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J Biol Chem 278(33):30854–30858

    Article  CAS  PubMed  Google Scholar 

  • Li L et al (2013) Neddylation pathway regulates the proliferation and survival of macrophages. Biochem Biophys Res Commun 432(3):494–498

    Article  CAS  PubMed  Google Scholar 

  • Li L et al (2014) Overactivated neddylation pathway as a therapeutic target in lung cancer. J Natl Cancer Inst 106(6):dju083

    Article  CAS  PubMed  Google Scholar 

  • Li H et al (2017) Inhibition of neddylation modification sensitizes pancreatic cancer cells to gemcitabine. Neoplasia 19(6):509–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JJ et al (2010a) NEDD8-targeting drug MLN4924 elicits DNA rereplication by stabilizing Cdt1 in S phase, triggering checkpoint activation, apoptosis, and senescence in cancer cells. Cancer Res 70(24):10310–10320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HK et al (2010b) Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464(7287):374–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin WC et al (2015) MLN4924, a Novel NEDD8-activating enzyme inhibitor, exhibits antitumor activity and enhances cisplatin-induced cytotoxicity in human cervical carcinoma: in vitro and in vivo study. Am J Cancer Res 5(11):3350–3362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S et al (2018) Neddylation inhibitor MLN4924 induces G2 cell cycle arrest, DNA damage and sensitizes esophageal squamous cell carcinoma cells to cisplatin. Oncol Lett 15(2):2583–2589

    PubMed  Google Scholar 

  • Lo SC, Hannink M (2006) CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1. Mol Cell Biol 26(4):1235–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loftus SJ et al (2012) NEDDylation regulates E2F-1-dependent transcription. EMBO Rep 13(9):811–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z et al (2012a) The Nedd8-activating enzyme inhibitor MLN4924 induces autophagy and apoptosis to suppress liver cancer cell growth. Cancer Res 72(13):3360–3371

    Article  CAS  PubMed  Google Scholar 

  • Luo Z et al (2012b) Inactivation of the Cullin (CUL)-RING E3 ligase by the NEDD8-activating enzyme inhibitor MLN4924 triggers protective autophagy in cancer cells. Autophagy 8(11):1677–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv Y et al (2018) The Nedd8-activating enzyme inhibitor MLN4924 suppresses colon cancer cell growth via triggering autophagy. Korean J Physiol Pharmacol 22(6):617–625

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyapina S et al (2001) Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292(5520):1382–1385

    Article  CAS  PubMed  Google Scholar 

  • Ma T et al (2013) RNF111-dependent neddylation activates DNA damage-induced ubiquitination. Mol Cell 49(5):897–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahata B, Sundqvist A, Xirodimas DP (2012) Recruitment of RPL11 at promoter sites of p53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependent manner. Oncogene 31(25):3060–3071

    Article  CAS  PubMed  Google Scholar 

  • Mathewson N et al (2013) Neddylation plays an important role in the regulation of murine and human dendritic cell function. Blood 122(12):2062–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlet J et al (2009) Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cell Mol Life Sci 66(11–12):1924–1938

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Schaller N et al (2009) The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes. Proc Natl Acad Sci U S A 106(30):12365–12370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milhollen MA et al (2010) MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-{kappa}B-dependent lymphoma. Blood 116(9):1515–1523

    Article  CAS  PubMed  Google Scholar 

  • Milhollen MA et al (2011) Inhibition of NEDD8-activating enzyme induces rereplication and apoptosis in human tumor cells consistent with deregulating CDT1 turnover. Cancer Res 71(8):3042–3051

    Article  CAS  PubMed  Google Scholar 

  • Milhollen MA et al (2012) Treatment-emergent mutations in NAEbeta confer resistance to the NEDD8-activating enzyme inhibitor MLN4924. Cancer Cell 21(3):388–401

    Article  CAS  PubMed  Google Scholar 

  • Mo Z et al (2016) Neddylation requires glycyl-tRNA synthetase to protect activated E2. Nat Struct Mol Biol 23(8):730–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrocki ST et al (2013) Disrupting protein NEDDylation with MLN4924 is a novel strategy to target cisplatin resistance in ovarian cancer. Clin Cancer Res 19(13):3577–3590

    Article  CAS  PubMed  Google Scholar 

  • Nawrocki ST et al (2015) The NEDD8-activating enzyme inhibitor MLN4924 disrupts nucleotide metabolism and augments the efficacy of cytarabine. Clin Cancer Res 21(2):439–447

    Article  CAS  PubMed  Google Scholar 

  • Noguchi K et al (2011) TRIM40 promotes neddylation of IKKgamma and is downregulated in gastrointestinal cancers. Carcinogenesis 32(7):995–1004

    Article  CAS  PubMed  Google Scholar 

  • Oladghaffari M et al (2017) MLN4924 and 2DG combined treatment enhances the efficiency of radiotherapy in breast cancer cells. Int J Radiat Biol 93(6):590–599

    Article  CAS  PubMed  Google Scholar 

  • Oved S et al (2006) Conjugation to Nedd8 instigates ubiquitylation and down-regulation of activated receptor tyrosine kinases. J Biol Chem 281(31):21640–21651

    Article  CAS  PubMed  Google Scholar 

  • Paiva C et al (2017) Pevonedistat, a Nedd8-activating enzyme inhibitor, sensitizes neoplastic B-cells to death receptor-mediated apoptosis. Oncotarget 8(13):21128–21139

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan Y et al (2012) Induction of cell senescence by targeting to Cullin-RING Ligases (CRLs) for effective cancer therapy. Int J Biochem Mol Biol 3(3):273–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • Rabut G, Peter M (2008) Function and regulation of protein neddylation. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep 9(10):969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabut G et al (2011) The TFIIH subunit Tfb3 regulates cullin neddylation. Mol Cell 43(3):488–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reverter D et al (2005) Structure of a complex between Nedd8 and the Ulp/Senp protease family member Den1. J Mol Biol 345(1):141–151

    Article  CAS  PubMed  Google Scholar 

  • Ryu JH et al (2011) Hypoxia-inducible factor alpha subunit stabilization by NEDD8 conjugation is reactive oxygen species-dependent. J Biol Chem 286(9):6963–6970

    Article  CAS  PubMed  Google Scholar 

  • Sakata E et al (2007) Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity. Nat Struct Mol Biol 14(2):167–168

    Article  CAS  PubMed  Google Scholar 

  • Sarantopoulos J et al (2016) Phase I study of the investigational NEDD8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924) in patients with advanced solid tumors. Clin Cancer Res 22(4):847–857

    Article  CAS  PubMed  Google Scholar 

  • Scott DC et al (2011) N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 334(6056):674–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott DC et al (2014) Structure of a RING E3 trapped in action reveals ligation mechanism for the ubiquitin-like protein NEDD8. Cell 157(7):1671–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott DC et al (2017) Blocking an N-terminal acetylation-dependent protein interaction inhibits an E3 ligase. Nat Chem Biol 13(8):850–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah JJ et al (2016) Phase I study of the novel investigational NEDD8-activating enzyme inhibitor pevonedistat (MLN4924) in patients with relapsed/refractory multiple myeloma or lymphoma. Clin Cancer Res 22(1):34–43

    Article  CAS  PubMed  Google Scholar 

  • Shen LN et al (2005) Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1. EMBO J 24(7):1341–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soucy TA et al (2009) An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458(7239):732–736

    Article  CAS  PubMed  Google Scholar 

  • Stickle NH et al (2004) pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol Cell Biol 24(8):3251–3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su H et al (2011) Perturbation of cullin deneddylation via conditional Csn8 ablation impairs the ubiquitin-proteasome system and causes cardiomyocyte necrosis and dilated cardiomyopathy in mice. Circ Res 108(1):40–50

    Article  CAS  PubMed  Google Scholar 

  • Su H et al (2013) The COP9 signalosome is required for autophagy, proteasome-mediated proteolysis, and cardiomyocyte survival in adult mice. Circ Heart Fail 6(5):1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Sundqvist A et al (2009) Regulation of nucleolar signalling to p53 through NEDDylation of L11. EMBO Rep 10(10):1132–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swords RT et al (2010) Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia. Blood 115(18):3796–3800

    Article  CAS  PubMed  Google Scholar 

  • Swords RT et al (2015) Pevonedistat (MLN4924), a first-in-class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study. Br J Haematol 169(4):534–543

    Article  CAS  PubMed  Google Scholar 

  • Swords RT et al (2018) Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, combined with azacitidine in patients with AML. Blood 131(13):1415–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan M et al (2011) Inactivation of SAG E3 ubiquitin ligase blocks embryonic stem cell differentiation and sensitizes leukemia cells to retinoid acid. PLoS One 6(11):e27726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan M, Li H, Sun Y (2014) Endothelial deletion of Sag/Rbx2/Roc2 E3 ubiquitin ligase causes embryonic lethality and blocks tumor angiogenesis. Oncogene 33(44):5211–5220

    Article  CAS  PubMed  Google Scholar 

  • Tian DW et al (2019) Neural precursor cell expressed, developmentally downregulated 8 promotes tumor progression and predicts poor prognosis of patients with bladder cancer. Cancer Sci 110(1):458–467

    CAS  PubMed  Google Scholar 

  • Tong S et al (2017) MLN4924 (Pevonedistat), a protein neddylation inhibitor, suppresses proliferation and migration of human clear cell renal cell carcinoma. Sci Rep 7(1):5599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toth JI et al (2012) A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924. Cell Rep 1(4):309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderdys V et al (2018) The neddylation inhibitor pevonedistat (MLN4924) suppresses and radiosensitizes head and neck squamous carcinoma cells and tumors. Mol Cancer Ther 17(2):368–380

    Article  CAS  PubMed  Google Scholar 

  • Visconte V et al (2016) Comprehensive quantitative proteomic profiling of the pharmacodynamic changes induced by MLN4924 in acute myeloid leukemia cells establishes rationale for its combination with azacitidine. Leukemia 30(5):1190–1194

    Article  CAS  PubMed  Google Scholar 

  • Walden H et al (2003) The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol Cell 12(6):1427–1437

    Article  CAS  PubMed  Google Scholar 

  • Wan J et al (2016) Radiosensitization of human colorectal cancer cells by MLN4924: an inhibitor of NEDD8-activating enzyme. Technol Cancer Res Treat 15(4):527–534

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2015) Targeting protein neddylation with an NEDD8-activating enzyme inhibitor MLN4924 induced apoptosis or senescence in human lymphoma cells. Cancer Biol Ther 16(3):420–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X et al (2016) Radiosensitization by the investigational NEDD8-activating enzyme inhibitor MLN4924 (pevonedistat) in hormone-resistant prostate cancer cells. Oncotarget 7(25):38380–38391

    PubMed  PubMed Central  Google Scholar 

  • Wang J et al (2017) Targeting neddylation pathway with MLN4924 (Pevonedistat) induces NOXA-dependent apoptosis in renal cell carcinoma. Biochem Biophys Res Commun 490(4):1183–1188

    Article  CAS  PubMed  Google Scholar 

  • Wang S et al (2019) Development of highly potent, selective, and cellular active triazolo[1,5-a]pyrimidine-based inhibitors targeting the DCN1-UBC12 protein-protein interaction. J Med Chem 62(5):2772–2797

    Article  CAS  PubMed  Google Scholar 

  • Watson IR et al (2010) Chemotherapy induces NEDP1-mediated destabilization of MDM2. Oncogene 29(2):297–304

    Article  CAS  PubMed  Google Scholar 

  • Watson IR, Irwin MS, Ohh M (2011) NEDD8 pathways in cancer, Sine Quibus Non. Cancer Cell 19(2):168–176

    Article  CAS  PubMed  Google Scholar 

  • Wei N, Serino G, Deng XW (2008) The COP9 signalosome: more than a protease. Trends Biochem Sci 33(12):592–600

    Article  CAS  PubMed  Google Scholar 

  • Wei D et al (2012) Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor. Cancer Res 72(1):282–293

    Article  CAS  PubMed  Google Scholar 

  • Xie P et al (2014) The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat Commun 5:3733

    Article  CAS  PubMed  Google Scholar 

  • Xie P et al (2017) Promoting tumorigenesis in nasopharyngeal carcinoma, NEDD8 serves as a potential theranostic target. Cell Death Dis 8(6):e2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xirodimas DP (2008) Novel substrates and functions for the ubiquitin-like molecule NEDD8. Biochem Soc Trans 36(Pt 5):802–806

    Article  CAS  PubMed  Google Scholar 

  • Xirodimas DP et al (2004) Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118(1):83–97

    Article  CAS  PubMed  Google Scholar 

  • Yang D et al (2012a) Protective autophagy induced by RBX1/ROC1 knockdown or CRL inactivation via modulating the DEPTOR-MTOR axis. Autophagy 8(12):1856–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D et al (2012b) The p21-dependent radiosensitization of human breast cancer cells by MLN4924, an investigational inhibitor of NEDD8 activating enzyme. PLoS One 7(3):e34079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D et al (2013) Induction of autophagy and senescence by knockdown of ROC1 E3 ubiquitin ligase to suppress the growth of liver cancer cells. Cell Death Differ 20(2):235–247

    Article  CAS  PubMed  Google Scholar 

  • Yao WT et al (2014) Suppression of tumor angiogenesis by targeting the protein neddylation pathway. Cell Death Dis 5:e1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2014) hCINAP is a novel regulator of ribosomal protein-HDM2-p53 pathway by controlling NEDDylation of ribosomal protein S14. Oncogene 33(2):246–254

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y et al (2016) MLN4924 suppresses neddylation and induces cell cycle arrest, senescence, and apoptosis in human osteosarcoma. Oncotarget 7(29):45263–45274

    PubMed  PubMed Central  Google Scholar 

  • Zhang W et al (2018) The Nedd8-activating enzyme inhibitor MLN4924 (TAK-924/Pevonedistat) induces apoptosis via c-Myc-Noxa axis in head and neck squamous cell carcinoma. Cell Prolif:e12536

    Google Scholar 

  • Zhao Y, Xiong X, Sun Y (2011a) DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 44(2):304–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L et al (2011b) The NEDD8-activating enzyme inhibitor, MLN4924, cooperates with TRAIL to augment apoptosis through facilitating c-FLIP degradation in head and neck cancer cells. Mol Cancer Ther 10(12):2415–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y et al (2012) Targeting Cullin-RING ligases by MLN4924 induces autophagy via modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR axis. Cell Death Dis 3:e386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Morgan MA, Sun Y (2014) Targeting Neddylation pathways to inactivate cullin-RING ligases for anticancer therapy. Antioxid Redox Signal 21(17):2383–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng N et al (2002) Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416(6882):703–709

    Article  CAS  PubMed  Google Scholar 

  • Zhou L et al (2016) The NAE inhibitor pevonedistat interacts with the HDAC inhibitor belinostat to target AML cells by disrupting the DDR. Blood 127(18):2219–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Lu J, Liu L, Bernard D, Yang C-Y, Fernandez-Salas E, Chinnaswamy K, Layton S, Stuckey J, Yu Q, Zhou W, Pan Z-Q, Sun Y, Wang S (2017a) A potent small-molecule inhibitor of the DCN1-UBC12 interaction that selectively blocks cullin 3 neddylation. Nat Commun 8(1):1150

    Google Scholar 

  • Zhou W et al (2017b) Neddylation E2 UBE2F promotes the survival of lung cancer cells by activating CRL5 to degrade NOXA via the K11 linkage. Clin Cancer Res 23(4):1104–1116

    CAS  PubMed  Google Scholar 

  • Zhou L et al (2018a) Protein neddylation and its alterations in human cancers for targeted therapy. Cell Signal 44:92–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H et al (2018b) High-affinity peptidomimetic inhibitors of the DCN1-UBC12 protein-protein interaction. J Med Chem 61(5):1934–1950

    Article  CAS  PubMed  Google Scholar 

  • Zhou W et al (2018c) UBE2M is a stress-inducible dual E2 for neddylation and ubiquitylation that promotes targeted degradation of UBE2F. Mol Cell 70(6):1008–1024 e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo W et al (2013) c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-beta type II receptor. Mol Cell 49(3):499–510

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Chinese Minister of Science and Technology grant (2016YFA0501800), National Natural Science Foundation of China (Grant Nos. 81820108022, 81625018, 81572340, 81772470, 81602072, 81401893, 81702244, and 81871870), Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-10-E00056), National Thirteenth Five-Year Science and Technology Major Special Project for New Drug and Development (2017ZX09304001), and Program of Shanghai Academic/Technology Research Leader (18XD1403800) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lisha Zhou or Lijun Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, L., Jia, L. (2020). Targeting Protein Neddylation for Cancer Therapy. In: Sun, Y., Wei, W., Jin, J. (eds) Cullin-RING Ligases and Protein Neddylation. Advances in Experimental Medicine and Biology, vol 1217. Springer, Singapore. https://doi.org/10.1007/978-981-15-1025-0_18

Download citation

Publish with us

Policies and ethics