Skip to main content

Manipulation of Thermal Diffusion Channels

  • Chapter
  • First Online:
Laser Heat-Mode Lithography

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 291))

  • 425 Accesses

Abstract

In laser heat-mode lithography, the resist thin films absorb the laser spot energy and are heated, and then experience a structural change when the temperature exceeds to certain threshold point, such as crystallization, melting, and gasification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Wei, J. Wei, Y. Wang, L. Zhang, Manipulation and simulations of thermal field profiles in laser heat-mode lithography. J. Appl. Phys. 122, 223107 (2017)

    Article  ADS  Google Scholar 

  2. C. Deng, Y. Geng, Y. Wu, Y. Wang, J. Wei, Adhesion effect of interface layers on pattern fabrication with GeSbTe as laser thermal lithography film. Microelectron. Eng. 103, 7–11 (2013)

    Article  Google Scholar 

  3. J. Wei, K. Zhang, T. Wei, Y. Wang, Y. Wu, M. Xiao, High-speed maskless nanolithography with visible light based on photothermal localization. Sci. Rep. 7, 43892 (2017)

    Article  ADS  Google Scholar 

  4. E. Ito, Y. Kawaguchi, M. Tomiyama, S. Abe, E. Ohno, TeOx-based film for heat-mode inorganic photoresist mastering. Jpn. J. Appl. Phys. 44(5B), 3574–3577 (2005)

    Article  ADS  Google Scholar 

  5. K. Zhang, Z. Chen, J. Wei, T. Wei, Y. Geng, Y. Wang, Y. Wu, A study on one-step laser nanopatterning onto copper-hydrazone-complex thin films and its mechanism. Phys. Chem. Chem. Phys. 19(20), 13272–13280 (2017)

    Article  Google Scholar 

  6. Y. Usami, T. Watanabe, Y. Kanazawa, T. Kazuaki, K. Hiroshi, I. Kimio, 405 nm laser thermal lithography of 40 nm pattern using super resolution organic resist material. Appl. Phys. Express 2(12), 126502 (2009)

    Article  ADS  Google Scholar 

  7. X. Jiao, J. Wei, F. Gan, M. Xiao, Temperature dependence of thermal properties of Ag8In14Sb55Te23 phase-change memory materials. Appl. Phys. A 94, 627–631 (2009)

    Article  ADS  Google Scholar 

  8. M. Kuwahara, J. Li, C. Mihalcea, N. Atoda, J. Tominaga, L. Shi, Thermal lithography for 100-nm dimensions using a nano-heat spot of a visible laser beam. Jpn. J. Appl. Phys. 41 (Part 2), L1022-L4 (2002)

    Article  ADS  Google Scholar 

  9. Q. Wang, J. Maddock, E. Rogers, T. Roy, 1.7Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage. Appl. Phys. Lett. 104(12), 121105 (2014)

    Article  ADS  Google Scholar 

  10. J. Wei, Y. Wang, Y. Wu, Manipulation of heat-diffusion channel in laser thermal lithography. Opt. Express 22, 32470–32481 (2014)

    Article  ADS  Google Scholar 

  11. X. Jiao, J. Wei, F. Gan, Si Underlayer induced nano-ablation in AgInSbTe thin films. Chin. Phys. Lett. 25, 209–211 (2008)

    Article  ADS  Google Scholar 

  12. H. Li, R. Wang, Y. Geng, Y. Wu, J. Wei, Enhancement effect of patterning resolution induced by an aluminum thermal conduction layer with AgInSbTe as a laser thermal lithography film. Chin. Phys. Lett. 29(7), 074401 (2012)

    Article  ADS  Google Scholar 

  13. H. Miura, N. Toyoshima, Y. Hayashi, S. Sangu, N. Iwata, J. Takahashi, Patterning of ZnS-SiO2 by laser irradiation and wet etching. Jpn. J. Appl. Phys. 45(2B), 1410–1413 (2006)

    Article  ADS  Google Scholar 

  14. T. Mori, New approach to fabrication of minute columnar and ring patterns with ZnS, SiO2, and Zn. Jpn. J. Appl. Phys. 48, 010221 (2009)

    Article  ADS  Google Scholar 

  15. Q. Zhou, K. Zhang, T. Wei, J. Wei, High resolution patterning on AgInSbTe thin films by laser thermal lithography. Proc. SPIE 9818, 98180Y (2016)

    Article  ADS  Google Scholar 

  16. T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, Nanosize fabrication using etching of phase-change recording films. Appl. Phys. Lett. 85(4), 639–641 (2004)

    Article  ADS  Google Scholar 

  17. H. Li, Preparation and properties of chalcogenide thin films for laser thermal lithography. Dissertation for the doctor degree of University of Chinese Academy of Sciences (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong Wei .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, J. (2019). Manipulation of Thermal Diffusion Channels. In: Laser Heat-Mode Lithography. Springer Series in Materials Science, vol 291. Springer, Singapore. https://doi.org/10.1007/978-981-15-0943-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0943-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0942-1

  • Online ISBN: 978-981-15-0943-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics