Signal and Background Modeling

  • Daiki YamaguchiEmail author
Part of the Springer Theses book series (Springer Theses)


This section describes various backgrounds and signals modelling in Monte Carlo simulation used for background estimation and interpretation of the final results to new physics theories beyond the standard model. The BSM scenarios considered in this analysis are the pair production of vector-like top quark and four-top-quark production. The detail of simulation is described in Sect. 5.1.


  1. 1.
    Höche S et al (2013) QCD matrix elements + parton showers: the NLO case. JHEP 04:027. arXiv:1207.5030 [hep-ph]
  2. 2.
    Czakon M, Mitov A (2014) Top++: a program for the calculation of the top-pair cross-section at hadron colliders. Comput Phys Commun 185:2930. arXiv:1112.5675 [hep-ph]ADSCrossRefGoogle Scholar
  3. 3.
    Cacciari M et al (2012) Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation. Phys Lett B 710:612. arXiv:1111.5869 [hep-ph]ADSCrossRefGoogle Scholar
  4. 4.
    Bärnreuther P, Czakon M, Mitov A (2012) Percent level precision physics at the tevatron: first genuine NNLO QCD corrections to \(q\bar{q} \rightarrow t\bar{t} + X\). Phys Rev Lett 109:132001. arXiv:1204.5201 [hep-ph]
  5. 5.
    Czakon M, Mitov A (2012) NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels. JHEP 12:054. arXiv:1207.0236 [hep-ph]
  6. 6.
    Czakon M, Mitov A (2013) NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction. JHEP 01:080. arXiv:1210.6832 [hep-ph]
  7. 7.
    Czakon M, Fiedler P, Mitov A (2013) Total top-quark pair-production cross section at hadron colliders through \(O(\alpha \frac{4}{S})\). Phys Rev Lett 110:252004. arXiv:1303.6254 [hep-ph]
  8. 8.
    Martin AD et al (2009) Parton distributions for the LHC. Eur Phys J C 63:189. arXiv:0901.0002 [hep-ph]ADSCrossRefGoogle Scholar
  9. 9.
    Martin AD et al (2009) Uncertainties on alpha(S) in global PDF analyses and implications for predicted hadronic cross sections. Eur Phys J C 64:653. arXiv:0905.3531 [hep-ph]
  10. 10.
    Botje M et al (2011) The PDF4LHC working group interim recommendations. arXiv:1101.0538 [hep-ph]
  11. 11.
    Lai H-L et al (2010) New parton distributions for collider physics. Phys Rev D 82:074024. arXiv:1007.2241 [hep-ph]
  12. 12.
    Gao J et al (2014) CT10 next-to-next-to-leading order global analysis of QCD. Phys Rev D 89:033009. arXiv:1302.6246 [hep-ph]
  13. 13.
    Ball RD et al (2013) Parton distributions with LHC data. Nucl Phys B 867:244. arXiv:1207.1303 [hep-ph]ADSCrossRefGoogle Scholar
  14. 14.
    Aguilar-Saavedra JA, PROTOS, a PROgram for TOp simulations.
  15. 15.
    Sjostrand T, Mrenna S, Skands PZ (2008) A brief introduction to PYTHIA 8.1. Comput Phys Commun 178:852. arXiv:0710.3820 [hep-ph]ADSCrossRefGoogle Scholar
  16. 16.
    ATLAS Collaboration (2014) ATLAS Pythia 8 tunes to 7 TeV data. ATL-PHYS-PUB-2014-021.
  17. 17.
    Pomarol A, Serra J (2008) Top quark compositeness: feasibility and implications. Phys Rev D 78:074026. arXiv:0806.3247 [hep-ph]
  18. 18.
    Lillie B, Shu J, Tait TMP (2008) Top compositeness at the Tevatron and LHC. JHEP 0804:087. arXiv:0712.3057 [hep-ph]CrossRefGoogle Scholar
  19. 19.
    Kumar K, Tait TMP, Vega-Morales R (2009) Manifestations of top compositeness at colliders. JHEP 0905:022. arXiv:0901.3808 [hep-ph]CrossRefGoogle Scholar
  20. 20.
    Guchait M, Mahmoudi F, Sridhar K (2008) Associated production of a Kaluza-Klein excitation of a gluon with a \(t\bar{t}\) pair at the LHC. Phys Lett B 666:347. arXiv:0710.2234 [hep-ph]
  21. 21.
    Degrande C et al (2011) Non-resonant new physics in top pair production at hadron colliders. JHEP 03:125. arXiv:1010.6304 [hep-ph]
  22. 22.
    Alwall J et al (2011) MadGraph 5: going beyond. JHEP 1106:128. arXiv:1106.0522 [hep-ph]
  23. 23.
    ATLAS Collaboration (2014) ATLAS Pythia 8 tunes to 7 TeV data. ATL-PHYS-PUB-2014-021.
  24. 24.
    Meade P, Reece M (2007) BRIDGE: branching ratio inquiry/decay generated events. arXiv:hep-ph/0703031
  25. 25.
    Frixione S, Nason P, Ridolfi G (2007) A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction. JHEP 0709:126. arXiv:0707.3088 [hep-ph]CrossRefGoogle Scholar
  26. 26.
    Nason P (2004) A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 0411:040. arXiv:hep-ph/0409146CrossRefGoogle Scholar
  27. 27.
    Frixione S, Nason P, Oleari C (2007) Matching NLO QCD computations with Parton shower simulations: the POWHEG method. JHEP 0711:070. arXiv:0709.2092 [hep-ph]CrossRefGoogle Scholar
  28. 28.
    Alioli S et al (2010) A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 1006:043. arXiv:1002.2581 [hep-ph]
  29. 29.
    ATLAS Collaboration (2015) Comparison of Monte Carlo generator predictions to ATLAS measurements of top pair production at \(\sqrt{s} = 7\) TeV. ATL-PHYS-PUB-2015-002.
  30. 30.
    Sjöstrand T, Mrenna S, Skands PZ (2006) PYTHIA 6.4 physics and manual. JHEP 0605:026. arXiv:hep-ph/0603175CrossRefGoogle Scholar
  31. 31.
    Pumplin J et al (2002) New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07:012. arXiv:hep-ph/0201195 [hep-ph]CrossRefGoogle Scholar
  32. 32.
    Skands PZ (2010) Tuning Monte Carlo generators: the Perugia tunes. Phys Rev D 82:074018. arXiv:1005.3457 [hep-ph]
  33. 33.
    Czakon M, Heymes D, Mitov A (2016) High-precision differential predictions for top-quark pairs at the LHC. Phys Rev Lett 116:082003. arXiv:1511.00549 [hep-ph]
  34. 34.
    Czakon M, Heymes D, Mitov A (2016) Dynamical scales for multi-TeV top-pair production at the LHC. arXiv:1606.03350 [hep-ph]
  35. 35.
    Cascioli F et al (2014) NLO matching for \(t\bar{t}b\bar{b}\) production with massive b-quarks. Phys Lett B 734:210. arXiv:1309.5912 [hep-ph]
  36. 36.
    Gleisberg T et al (2009) Event generation with SHERPA 1.1. JHEP 0902:007. arXiv:0811.4622 [hep-ph]CrossRefGoogle Scholar
  37. 37.
    Cascioli F, Maierhofer P, Pozzorini S (2012) Scattering amplitudes with open loops. Phys Rev Lett 108:111601. arXiv:1111.5206 [hep-ph]
  38. 38.
    ATLAS Collaboration (2016) Search for new phenomena in \(t\bar{t}\) final states with additional heavy-flavour jets in 13.2 \({fb^{-1}}\) of \(pp\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector. ATLAS-CONF-2016-104.
  39. 39.
    Gleisberg T, Höche S (2008) Comix, a new matrix element generator. JHEP 0812:039. arXiv:0808.3674 [hep-ph]CrossRefGoogle Scholar
  40. 40.
    Schumann S, Krauss F (2008) A Parton shower algorithm based on Catani-Seymour dipole factorisation. JHEP 03:038. arXiv:0709.1027 [hep-ph]CrossRefGoogle Scholar
  41. 41.
    Anastasiou C et al (2004) High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO. Phys Rev D 69:094008. arXiv:hep-ph/0312266 [hep-ph]
  42. 42.
    Frixione S et al (2006) Single-top production in MC@NLO. JHEP 03:092. arXiv:hep-ph/0512250CrossRefGoogle Scholar
  43. 43.
    Kidonakis N (2011) Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production. Phys Rev D 83:091503. arXiv:1103.2792 [hep-ph]
  44. 44.
    Kidonakis N (2010) Two-loop soft anomalous dimensions for single top quark associated production with a W- or H-. Phys Rev D 82:054018. arXiv:1005.4451 [hep-ph]
  45. 45.
    Kidonakis N (2010) NNLL resummation for s-channel single top quark production. Phys Rev D 81:054028. arXiv:1001.5034 [hep-ph]
  46. 46.
    Ball RD et al (2015) Parton distributions for the LHC Run II. JHEP 04:040. arXiv:1410.8849 [hep-ph]
  47. 47.
    Raitio R, Wada WW (1979) Higgs Boson production at large transverse momentum in QCD. Phys Rev D 19:941ADSCrossRefGoogle Scholar
  48. 48.
    Beenakker W et al (2003) NLO QCD corrections to \(t\bar{t}\)H production in hadron collisions. Nucl Phys B 653:151. arXiv:hep-ph/0211352 [hep-ph]
  49. 49.
    Dawson S et al (2003) Associated Higgs production with top quarks at the large hadron collider: NLO QCD corrections. Phys Rev D 68:034022. arXiv:hep-ph/0305087 [hep-ph]
  50. 50.
    Zhang Y et al (2014) QCD NLO and EW NLO corrections to \(t\bar{t}\)H production with top quark decays at hadron collider. Phys Lett B 738:1. arXiv:1407.1110 [hep-ph]
  51. 51.
    Frixione S et al (2015) Electroweak and QCD corrections to top-pair hadron production in association with heavy bosons. JHEP 1506:184. arXiv:1504.03446 [hep-ph]
  52. 52.
    Djouadi A, Kalinowski J, Spira M (1998) HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension. Comput Phys Commun 108:56. arXiv:hep-ph/9704448 [hep-ph]ADSCrossRefGoogle Scholar
  53. 53.
    Collaboration ATLAS (2011) Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \(\sqrt{s} = 7\) TeV. Eur Phys J C 71:1577 arXiv:1012.1792 [hep-ex]CrossRefGoogle Scholar
  54. 54.
    Golonka P, Was Z (2006) PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays. Eur Phys J C 45:97 arXiv:hep-ph/0506026ADSCrossRefGoogle Scholar
  55. 55.
    Jadach S, Kuhn JH, Was Z (1991) TAUOLA: a library of Monte Carlo programs to simulate decays of polarized \(\tau \) leptons. Comput Phys Commun 64:275ADSCrossRefGoogle Scholar
  56. 56.
    Lange DJ (2001) The EvtGen particle decay simulation package. Nucl Instrum Meth A 462:152ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations