Advertisement

Reconstruction of Physics Objects

  • Daiki YamaguchiEmail author
Chapter
  • 61 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The particles generated in pp collisions are detected in the ATLAS detector as described in Chap.  2. To use the information of the detectors, the information such as the direction and momenta of the particles are reconstructed. In addition, the kinds of particles are identified using the features of the particles such as the energy deposits and the lifetime. The reconstructed information is referred to as physics object. This chapter begins with the reconstruction of the trajectories of charged particles, which is the basic object for all the other objects. Afterwards, objects such as electrons and muons used in this analysis are described. In Sect. 3.1.1, measurements of the impact parameter resolutions of tracks performed in this dissertation are described.

References

  1. 1.
    Rosenfeld A, Pfaltz JL (1966) Sequential operations in digital picture processing. J ACM 13:471. ISSN: 0004-5411.  https://doi.org/10.1145/321356.321357CrossRefGoogle Scholar
  2. 2.
    Frühwirth R (1987) Application of Kalman filtering to track and vertex fitting. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 262:444. ISSN: 0168-9002. http://www.sciencedirect.com/science/article/pii/0168900287908874
  3. 3.
    Wicke D (1998) A new algorithm for solving track ambiguitiesGoogle Scholar
  4. 4.
    Cornelissen T et al (2007) Concepts, design and implementation of the ATLAS new tracking (NEWT), ed. by A. SalzburgerGoogle Scholar
  5. 5.
    Aaboud M et al (2017) Performance of the ATLAS track reconstruction algorithms in dense environments in LHC run 2. arXiv:1704.07983 [hep-ex]
  6. 6.
    Sidoti A (2014) Minimum bias trigger scintillators in ATLAS Run II. J Instrum 9:C10020. http://stacks.iop.org/1748-0221/9/i=10/a=C10020CrossRefGoogle Scholar
  7. 7.
    Sjostrand T, Mrenna S, Skands PZ (2008) A brief introduction to PYTHIA 8.1. Comput Phys Commun 178:852. arXiv:0710.3820 [hep-ph]ADSCrossRefGoogle Scholar
  8. 8.
    ATLAS Collaboration (2011) Further ATLAS tunes of Pythia 6 and Pythia 8. ATL-PHYS-PUB-2011-014. https://cds.cern.ch/record/1400677
  9. 9.
    Sherstnev A, Thorne RS (2008) Parton distributions for LO generators. Eur Phys J C 55:553. arXiv:0711.2473 [hep-ph]ADSCrossRefGoogle Scholar
  10. 10.
    Agostinelli S et al (2003) GEANT4: a simulation toolkit. Nucl Instrum Meth A 506:250ADSCrossRefGoogle Scholar
  11. 11.
    Collaboration ATLAS (2010) The ATLAS simulation infrastructure. Eur Phys J C 70:823. arXiv:1005.4568 [hep-ex]
  12. 12.
    ATLAS Collaboration (2015) Impact parameter resolution. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2015-007/. Accessed Dec 2017
  13. 13.
    ATLAS Collaboration (2010) Tracking studies for b-tagging with 7 TeV collision data with the ATLAS detector. ATLAS-CONF-2010-070. https://cds.cern.ch/record/1281352
  14. 14.
    ATLAS Collaboration (2015) Vertex reconstruction performance of the ATLAS detector at \(\sqrt{s} = 13\) TeV. ATL-PHYS-PUB-2015-026. https://cds.cern.ch/record/2037717
  15. 15.
    Aaboud M et al (2017) Study of the material of the ATLAS inner detector for Run 2 of the LHC. arXiv:1707.02826 [hep-ex]
  16. 16.
    ATLAS Collaboration (2015) Early inner detector tracking performance in the 2015 data at \(\sqrt{s}=13\) TeV. ATL-PHYS-PUB-2015-051. https://cds.cern.ch/record/2110140
  17. 17.
    ATLAS Collaboration (2015) Track reconstruction performance of the ATLAS inner detector at \(\sqrt{s}= 13\) TeV. ATL-PHYS-PUB-2015-018. https://cds.cern.ch/record/2037683
  18. 18.
    Capeans M et al (2010) ATLAS insertable B-Layer technical design report. Technical report, CERN-LHCC-2010-013. ATLAS-TDR-19. https://cds.cern.ch/record/1291633
  19. 19.
    Fruhwirth R, Waltenberger W, Vanlaer P (2007) Adaptive vertex fitting. J Phys G34:N343Google Scholar
  20. 20.
    ATLAS Collaboration (2010) Performance of primary vertex reconstruction in proton-proton collisions at \(\sqrt{s} = 7\) TeV in the ATLAS experiment. ATLAS-CONF-2010-069. https://cds.cern.ch/record/1281344
  21. 21.
    ATLAS Collaboration (2015) A search for R-parity-violating scalar top decays in all-hadronic final states with the ATLAS detector in \(\sqrt{s}= 8\) TeV \(pp\) collisions. ATLAS-CONF-2015-026. https://cds.cern.ch/record/2037653
  22. 22.
    ATLAS Collaboration (2016) Electron efficiency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data. ATLAS-CONF-2016-024. https://cds.cern.ch/record/2157687
  23. 23.
    Lampl W et al (2008) Calorimeter clustering algorithms: description and performance. Technical report, ATL-LARG-PUB-2008-002, ATL-COM-LARG-2008-003, CERN. https://cds.cern.ch/record/1099735
  24. 24.
    Cornelissen TG et al (2008) The global \(X^{2}\) track fitter in ATLAS. J Phys Conf Ser 119:032013. http://stacks.iop.org/1742-6596/119/i=3/a=032013
  25. 25.
    ATLAS Collaboration (2012) Improved electron reconstruction in ATLAS using the Gaussian sum filter-based model for bremsstrahlung. ATLAS-CONF-2012-047. https://cds.cern.ch/record/1449796
  26. 26.
    Aad G et al (2014) Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur Phys J C 74:3071. arXiv:1407.5063 [hep-ex]
  27. 27.
    Aad G et al (2016) Muon reconstruction performance of the ATLAS detector in proton-proton collision data at \(\sqrt{s}=13\) TeV. Eur Phys J C 76:292. arXiv:1603.05598 [hep-ex]
  28. 28.
    Cacciari M, Salam GP, Soyez G (2008) The anti-k(t) jet clustering algorithm. JHEP 04:063. arXiv:0802.1189 [hep-ph]
  29. 29.
    Aad G et al (2017) Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1. Eur Phys J C 77:490. arXiv:1603.02934 [hep-ex]
  30. 30.
    Aaboud M et al (2017) Jet reconstruction and performance using particle flow with the ATLAS Detector. Eur Phys J C 77:466. arXiv:1703.10485 [hep-ex]
  31. 31.
    ATLAS Collaboration (2015) Monte Carlo calibration and combination of in-situ measurements of jet energy scale. Jet Energy Resolution and Jet Mass in ATLAS, ATLAS-CONF-2015-037. https://cds.cern.ch/record/2044941
  32. 32.
    ATLAS Collaboration (2015) Jet calibration and systematic uncertainties for jets reconstructed in the ATLAS detector at \(\sqrt{s} = 13\) TeV. ATL-PHYS-PUB-2015-015. https://cds.cern.ch/record/2037613
  33. 33.
    ATLAS Collaboration (2014) Tagging and suppression of pileup jets with the ATLAS detector. ATLAS-CONF-2014-018. https://cds.cern.ch/record/1700870
  34. 34.
    ATLAS Collaboration (2016) JVT public plots for ICHEP 2016. JETM-2016-011. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2016-011/
  35. 35.
    Nachman B et al (2015) Jets from jets: re-clustering as a tool for large radius jet reconstruction and grooming at the LHC. JHEP 02:075. arXiv:1407.2922 [hep-ph]
  36. 36.
    ATLAS Collaboration (2017) Jet reclustering and close-by effects in ATLAS Run 2. ATLAS-CONF-2017-062. https://cds.cern.ch/record/2275649
  37. 37.
    ATLAS Collaboration (2016) Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run. ATL-PHYS-PUB-2016-012. https://cds.cern.ch/record/2160731
  38. 38.
    ATLAS Collaboration (2011) Commissioning of the ATLAS high performance b-tagging algorithms in the 7 TeV collision data. ATLAS-CONF-2011-102. https://cds.cern.ch/record/1369219
  39. 39.
    Piacquadio G, Weiser C (2008) A new inclusive secondary vertex algorithm for b-jet tagging in ATLAS. J Phys Conf Ser 119:032032. http://stacks.iop.org/1742-6596/119/i=3/a=032032Google Scholar
  40. 40.
    Aad G et al (2016) Performance of b-Jet Identification in the ATLAS experiment. JINST 11:P04008. arXiv:1512.01094 [hep-ex]
  41. 41.
    ATLAS Collaboration (2015) Performance of missing transverse momentum reconstruction with the ATLAS detector in the first proton-proton collisions at \(\sqrt{s}= 13\) TeV. ATL-PHYS-PUB-2015-027. https://cds.cern.ch/record/2037904
  42. 42.
    Cacciari M, Salam GP (2008) Pileup subtraction using jet areas. Phys Lett B 659:119. arXiv:0707.1378 [hep-ph]ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations