Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 139 Accesses

Abstract

The experimental equipments used for this dissertation are described in this section. In order to search for new phenomena described in the previous section, the high energy collider experiments are necessary. Such experiments consist of the collider and the detector. Section 2.1 describes the overview of the collider and its condition during data-taking period used for this dissertation. Section 2.2 shows the detector used in this dissertation. Section 2.3 describes results of the monitoring system for the Pixel detector developed in this dissertation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans L, Bryant P (2008) LHC machine. J Instrum 3:S08001. http://stacks.iop.org/1748-0221/3/i=08/a=S08001

    Article  ADS  Google Scholar 

  2. Arnison G et al (1983) Experimental observation of isolated large transverse energy electrons with associated missing energy at \({\sqrt{s}} = 540\) GeV. Phys Lett 122B

    Google Scholar 

  3. Banner M et al (1983) Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN \(\bar{p}p\) collider. Phys Lett 122B

    Google Scholar 

  4. Arnison G et al (1983) Experimental observation of lepton pairs of invariant mass around 95 GeV/c\(^2\) at the CERN SPS collider. Phys Lett 126B

    Google Scholar 

  5. Bagnaia P et al (1983) Evidence for \(Z^{0} \rightarrow {e^{+}}{e^{-}}\) at the CERN \(p\bar{p}\) collider. Phys Lett 129B

    Google Scholar 

  6. Haffner J (2013) The CERN accelerator complex. Complexe des accélérateurs du CERN. General Photo. https://cds.cern.ch/record/1621894

  7. ATLAS Collaboration (2017) Luminosity Public Results Run2. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2. Accessd Dec 2017

  8. ATLAS Collaboration (2008) The ATLAS experiment at the CERN large Hadron collider. JINST 3:S08003

    Google Scholar 

  9. Yamamoto A et al (2008) The ATLAS central solenoid. Nucl Instrum Meth A584:53

    Article  ADS  Google Scholar 

  10. Capeans M et al (2010) ATLAS insertable B-Layer technical design report. Technical report, CERN-LHCC-2010-013. ATLAS-TDR-19. https://cds.cern.ch/record/1291633

  11. Studies of the ATLAS inner detector material using \(\sqrt{s} = 13\) TeV \(pp\) collision data. Technical report, ATL-PHYS-PUB-2015-050, CERN (2015). https://cds.cern.ch/record/2109010

  12. Barbero M et al (2009) A new ATLAS pixel front-end IC for upgraded LHC luminosity. Nucl Instrum Meth A604:397

    Article  ADS  Google Scholar 

  13. Garcia-Sciveres M et al (2011) The FE-I4 pixel readout integrated circuit. Nucl Instrum Meth A636:S155

    Article  Google Scholar 

  14. Arutinov D et al (2008) Digital architecture and interface of the new ATLAS pixel front-end IC for upgraded LHC luminosity. IEEE Trans Nucl Sci 56:388. ISSN: 0018-9499

    Google Scholar 

  15. Aad G et al (2008) ATLAS pixel detector electronics and sensors. J Instrum 3:P07007. http://stacks.iop.org/1748-0221/3/i=07/a=P07007

  16. ATLAS Collaboration (2016) TRT performance results from 13 TeV collision data (2015/2016). https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/TRT-2016-001/

  17. Akhmadaliev S et al (2000) Results from a new combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 449:461. ISSN: 0168-9002. http://www.sciencedirect.com/science/article/pii/S0168900200001534

  18. Drift of IBL LV current and its consequence in IBL distortion. Technical report, ATL-INDET-PUB-2015-002, CERN (2015). https://cds.cern.ch/record/2105528

  19. ATLAS Computing: technical design report, Technical Design Report ATLAS, CERN (2005). https://cds.cern.ch/record/837738

  20. Rosenfeld A, Pfaltz JL (1966) Sequential operations in digital picture processing. J ACM 13:471. ISSN: 0004-5411. http://doi.acm.org/10.1145/321356.321357

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiki Yamaguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamaguchi, D. (2019). The ATLAS Experiment at the Large Hadron Collider. In: Search for New Phenomena in Top-Antitop Quarks Final States with Additional Heavy-Flavour Jets with the ATLAS Detector. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-0932-2_2

Download citation

Publish with us

Policies and ethics