• Daiki YamaguchiEmail author
Part of the Springer Theses book series (Springer Theses)


An elementary particle is the minimum entity of the nature, which is not able to be divided further. The dynamics of elementary particles are described by a theoretical model referred to as “Standard Model” (SM). In the nature, it is known that there are four forces: the strong force, electromagnetic force, weak force, and gravity. The SM describes all forces except the gravity based on the quantum field theory. The SM can explain most of the experimental results precisely, while it cannot explain the origin of the dark matter in the universe and has fundamental issues called hierarchy problem, which causes the divergence of the Higgs boson’s mass.


  1. 1.
    Gell-Mann M (1964) A schematic model of Baryons and Mesons. Phys Lett 8:214ADSCrossRefGoogle Scholar
  2. 2.
    Weinberg S (1967) A model of leptons. Phys Rev Lett 19:1264ADSCrossRefGoogle Scholar
  3. 3.
    Salam A (1968) Weak and electromagnetic interactions. In: Conference of the proceedings C680519:367Google Scholar
  4. 4.
    Glashow SL, Iliopoulos J, Maiani L (1970) Weak interactions with Lepton-Hadron symmetry. Phys Rev D 2:1285ADSCrossRefGoogle Scholar
  5. 5.
    Álvarez-Gaumé L, Ellis J (2010) Eyes on a prize particle. Nat Phys 7(2). Scholar
  6. 6.
    CP et al (2016) Chin Phys C 40:10001Google Scholar
  7. 7.
    Aaltonen TA et al (2013) Combination of CDF and D0 W-Boson mass measurements. Phys Rev D 88:052018. arXiv:1307.7627 [hep-ex]
  8. 8.
    ALEPH Collaboration (2006) Precision electroweak measurements on the Z resonance. Phys Rep 427:257. ISSN: 0370-1573.
  9. 9.
    Abazov VM et al (2015) Measurement of the effective weak mixing angle in \(p\bar{p} \rightarrow Z/\gamma \rightarrow {e^{+}}{e^{-}}\) events. Phys Rev Lett 115(4):041801.
  10. 10.
    Aaltonen T et al (2014) Indirect measurement of \({sin^2}\theta _W\) (or MW) using \({\mu ^{+}}{\mu ^{-}}\) pairs from \({\gamma ^*}/Z\) bosons produced in \(p\bar{p}\) collisions at a center-of-momentum energy of 1.96 TeV. Phys Rev D 89(7):072005.
  11. 11.
    Abe F et al 1995 Observation of top quark production in \(pp\) collisions with the collider detector at Fermilab. Phys Rev Lett 74(14):2626.
  12. 12.
    Abachi S et al (1995) Observation of the top quark. Phys Rev Lett 74(14):2632.
  13. 13.
    ATLAS Collaboration (2017) Measurement of the Higgs boson mass in the \(H \rightarrow Z {Z*} \rightarrow 4l\) and \(H \rightarrow \gamma \gamma \) channels with \({\sqrt{s}}=13{rm TeV} pp\) collisions using the ATLAS detector. Technical report, ATLAS-CONF-2017-046, CERN.
  14. 14.
    Aad G et al (2015) Combined measurement of the Higgs Boson mass in \(pp\) collisions at \({\sqrt{s}} = 7\) and 8 TeV with the ATLAS and CMS experiments. Phys Rev Lett 114:191803. arXiv:1503.07589 [hep-ex]
  15. 15.
    ATLAS and CMS Collaborations (2016) Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC \(pp\) collision data at \({\sqrt{s}} = 7\) and 8 TeV. JHEP 08:045. arXiv:1606.02266 [hep-ex]
  16. 16.
    Ellis J, You T (2013) Updated global analysis of Higgs couplings. JHEP 06:103. arXiv:1303.3879 [hep-ph]
  17. 17.
    ATLAS Collaboration (2017) Summary plots from the ATLAS standard model physics group. Accessed Dec 2017
  18. 18.
    Zwicky F (1933) Spectral displacement of extra galactic nebulae. Helv Phys Acta 6:110ADSzbMATHGoogle Scholar
  19. 19.
    Rubin VC, Ford WK Jr (1970) Rotation of the Andromeda Nebula from a spectroscopic survey of emission regions. Astrophys J 159:379ADSCrossRefGoogle Scholar
  20. 20.
    Rubin VC, Ford WK Jr, Thonnard N (1980) Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R = 4kpc/ to UGC 2885 /R = 122 kpc/. Astrophys J 238:471ADSCrossRefGoogle Scholar
  21. 21.
    Arkani-Hamed N, Dimopoulos S, Dvali GR (1998) The Hierarchy problem and new dimensions at a millimeter. Phys Lett B 429:263 arXiv:hep-ph/9803315 [hep-ph]ADSCrossRefGoogle Scholar
  22. 22.
    Aaboud et al M (2017) Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector. arXiv:1711.03301 [hep-ex]
  23. 23.
    Appelquist T, Cheng H-C, Dobrescu BA (2001) Bounds on universal extra dimensions. Phys Rev D 64:035002 arXiv:hep-ph/0012100 [hep-ph]
  24. 24.
    Burdman G, Dobrescu BA, Ponton E (2006) Resonances from two universal extra dimensions. Phys Rev D 74:075008 arXiv:hep-ph/0601186 [hep-ph]
  25. 25.
    Cacciapaglia G, Deandrea A, Llodra-Perez J (2010) A dark matter candidate from Lorentz invariance in 6D. JHEP 03:083. arXiv:0907.4993 [hep-ph]
  26. 26.
    Cacciapaglia G et al (2011) Four tops on the real projective plane at LHC. JHEP 1110:042. arXiv:1107.4616 [hep-ph]
  27. 27.
    Arbey A et al (2013) Dark matter in a twisted bottle. JHEP 01:147. arXiv:1210.0384 [hep-ph]
  28. 28.
    Randall L, Sundrum R (1999) Large mass hierarchy from a small extra dimension. Phys Rev Lett 83(17):3370. Scholar
  29. 29.
    Contino R et al (2007) Warped/composite phenomenology simplified. JHEP 05:074 arXiv:hep-ph/0612180 [hep-ph]
  30. 30.
    Goldstone J, Salam A, Weinberg S (1962) Broken symmetries. Phys Rev 127:965ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Kaplan DB, Georgi H (1984) SU(2) x U(1) breaking by vacuum misalignment. Phys Lett 136B:183ADSCrossRefGoogle Scholar
  32. 32.
    Kaplan DB, Georgi H, Dimopoulos S (1984) Composite Higgs scalars. Phys Lett 136B:187Google Scholar
  33. 33.
    Georgi H, Kaplan DB (1984) Composite Higgs and Custodial SU(2). Phys Lett 145B:216ADSCrossRefGoogle Scholar
  34. 34.
    Arkani-Hamed N, Cohen AG, Georgi H (2001) Electroweak symmetry breaking from dimensional deconstruction. Phys Lett B 513:232 arXiv:hep-ph/0105239 [hep-ph]ADSCrossRefGoogle Scholar
  35. 35.
    Arkani-Hamed N et al (2002) The littlest Higgs. JHEP 07:034 arXiv:hep-ph/0206021 [hep-ph]
  36. 36.
    Agashe K, Contino R, Pomarol A (2005) The minimal composite Higgs model. Nucl Phys B 719:165 arXiv:hep-ph/0412089 [hep-ph]ADSCrossRefGoogle Scholar
  37. 37.
    Mrazek J et al (2011) The other natural two Higgs doublet model. Nucl Phys B 853:1. arXiv:1105.5403 [hep-ph]ADSCrossRefGoogle Scholar
  38. 38.
    Kaplan DB (1991) Flavor at SSC energies: a new mechanism for dynamically generated fermion masses. Nucl Phys B 365:259. ISSN: 0550-3213. Scholar
  39. 39.
    Pomarol A, Serra J (2008) Top quark compositeness: feasibility and implications. Phys Rev D 78:074026. arXiv:0806.3247 [hep-ph]
  40. 40.
    Lillie B, Shu J, Tait TMP (2008) Top compositeness at the Tevatron and LHC. JHEP 0804:087. arXiv:0712.3057 [hep-ph]CrossRefGoogle Scholar
  41. 41.
    Kumar K, Tait TMP, Vega-Morales R (2009) Manifestations of top compositeness at colliders. JHEP 0905:022. arXiv:0901.3808 [hep-ph]CrossRefGoogle Scholar
  42. 42.
    Georgi H et al (1995) Effects of top quark compositeness. Phys Rev D 51(7):3888. Scholar
  43. 43.
    Aguilar-Saavedra JA et al (2013) Handbook of vectorlike quarks: mixing and single production. Phys Rev D 88:094010. arXiv:1306.0572 [hep-ph]
  44. 44.
    Collaboration ATLAS (2016) Measurements of the Higgs boson production and decay rates and coupling strengths using \(pp\) collision data at \({\sqrt{s}} = 7\) and 8 TeV in the ATLAS experiment. Eur Phys J C 76:6. arXiv:1507.04548 [hep-ex]
  45. 45.
    ATLAS Collaboration (2012) Letter of intent for the phase-II upgrade of the ATLAS experiment. Technical report, CERN-LHCC-2012-022. LHCC-I-023, Draft version for comments: CERN.
  46. 46.
    del Aguila F, Perez-Victoria M, Santiago J (2000) Effective description of quark mixing. Phys Lett B 492:98. arXiv:hep-ph/0007160 [hep-ph]
  47. 47.
    Glashow SL, Iliopoulos J, Maiani L (1970) Weak interactions with Lepton-Hadron symmetry. Phys Rev D 2(7):1285. Scholar
  48. 48.
    Aguilar-Saavedra JA (2009) Identifying top partners at LHC. JHEP 0911:030. arXiv:0907.3155 [hep-ph]CrossRefGoogle Scholar
  49. 49.
    ATLAS Collaboration (2016) Search for new phenomena in \(t\bar{t}\) final states with additional heavy-flavour jets in \(13.2 \text{fb}^{-1}\) of \(pp\) collisions at \({\sqrt{s}} = 13\) TeV with the ATLAS detector. ATLAS-CONF-2016-104.
  50. 50.
    Aaboud M et al (2017) Search for pair production of vector-like top quarks in events with one lepton, jets, and missing transverse momentum in \({\sqrt{s}} = 13\) TeV \(pp\) collisions with the ATLAS detector. JHEP 08:052. arXiv:1705.10751 [hep-ex]
  51. 51.
    Aaboud M et al (2017) Search for pair production of heavy vector-like quarks decaying to high-pT W bosons and b quarks in the lepton-plus-jets final state in \(pp\) collisions at \({\sqrt{s}} = 13\) TeV with the ATLAS detector. JHEP 10:141. arXiv:1707.03347 [hep-ex]
  52. 52.
    Sirunyan AM et al (2017) Search for pair production of vector-like quarks in the bWbW channel from proton-proton collisions at \({\sqrt{s}} = 13\) TeV. arXiv:1710.01539 [hep-ex]
  53. 53.
    CMS Collaboration (2017) Search for heavy vector-like quarks decaying to same-sign dileptons. Technical report, CMS-PAS-B2G-16-019, CERN.
  54. 54.
    Barger VD, Stange AL, Phillips RJN (1991) Four heavy quark hadroproduction. Phys Rev D 44:1987ADSCrossRefGoogle Scholar
  55. 55.
    Barger V, Keung W-Y, Yencho B (2010) Triple-top signal of new physics at the LHC. Phys Lett B 687:70. arXiv:1001.0221 [hep-ph]ADSCrossRefGoogle Scholar
  56. 56.
    CMS Collaboration (2017) Search for the standard model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at \({\sqrt{s}} = 13\) TeV. Technical report, CMS-PAS-TOP-17-009, CERN.
  57. 57.
    Degrande C et al (2011) Non-resonant new physics in top pair production at hadron colliders. JHEP 03:125. arXiv:1010.6304 [hep-ph]

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations