Skip to main content

Mathematical Study on Human Cells Interaction Dynamics for HIV-TB Co-infection

  • Chapter
  • First Online:
Mathematical Modelling, Optimization, Analytic and Numerical Solutions

Part of the book series: Industrial and Applied Mathematics ((INAMA))

Abstract

Co-infection of Tuberculosis (caused by Mycobacterium tuberculosis bacteria) and HIV (caused by Human Immunodeficiency virus) remains a global burden on public health system and poses particular diagnostic and therapeutic challenges. Due to co-infection, HIV speeds up the progression from latent to active TB and TB bacteria also accelerates the progress of HIV infection which ultimately leads to serious condition in individuals. In this research work, we formulate a six compartment mathematical model on the HIV-TB co-infection dynamics incorporating Macrophage (active and infected), T-cell (active and infected), Virus, and Bacteria population. Moreover, we explore the accelerating effect of both pathogens on each other in mathematical perceptive. Our analytical study reveals the conditions for the persistence of co-infection and also validates the stability criteria of equilibrium points for the disease. We also evaluate the disease-free condition using next generation method, expressed by the basic reproductive ratio (\(R_0\)). Moreover, our analytical and numerical simulations manifest the influence of certain key parameters on the threats posed by the impact of HIV-TB co-infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization, Global tuberculosis report 2017, Available: http://www.who.int/en/news-room/fact-sheets/detail/tuberculosis

  2. A. Pawlowski, M. Jansson, M. Skld, M.E. Rottenberg, G. Killenius, Tuberculosis and HIV co-infection. PLoS Pathog. 8(2), e1002464 (2012)

    Article  Google Scholar 

  3. R.M. Houben, P.J. Dodd, The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med. 13(10), e1002152 (2016)

    Article  Google Scholar 

  4. P.L. Liu, J.L. Flynn, Understanding latent tuberculosis: a moving target. J. Immunol. 185(1), 15–22 (2010)

    Article  Google Scholar 

  5. UNAIDS (2017) report, Available: https://www.hiv.gov/hiv-basics/overview/data-and-trends/global-statistics

  6. G.A.C. Blood, Human immunodeficiency virus (HIV). Transfus. Med. Hemotherapy 43(3), 203 (2016)

    Article  Google Scholar 

  7. C.C. Chang, M. Crane, J. Zhou, J.J. Post, B.A. Cameron, A.R. Lloyd, A. Jaworowski, M.A. French, S.R. Lewin, HIV and co-infections. Immunol. Rev. 254(1), 114–142 (2013)

    Article  Google Scholar 

  8. World Health Organization (WHO), Global tuberculosis report 2017, http://apps.who.int/iris/bitstream/10665/259366/1/9789241565516-eng.pdf. Accessed 10 Jan 2017

  9. K.C. McCullough, A. Summerfield, Basic concepts of immune response and defense development. ILAR J 46(3), 230–240 (2005)

    Article  Google Scholar 

  10. V. Trouplin, N. Boucherit, L. Gorvel, F. Conti, G. Mottola, E. Ghigo, Bone marrow-derived macrophage production. J. Vis. Exp.: JoVE 81 (2013)

    Google Scholar 

  11. R.N. La Motte-Mohs, E. Herer, J.C. Ziga-Pflcker, Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 105(4), 1431—1439 (2005)

    Google Scholar 

  12. M.S. Blumenreich, The White Blood Cell and Differential Count, Clinical Methods: The History, Physical, and Laboratory Examinations [Internet], 3rd edn. (Butterworths, Boston, 1990)

    Google Scholar 

  13. L. Wu, N.P. Gerard, R. Wyatt, H. Choe, C. Parolin, N. Ruffing, A. Borsetti, A.A. Cardoso, E. Desjardin, W. Newman, C. Gerard, CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384(6605), 179 (1996)

    Article  Google Scholar 

  14. B. Lee, M. Sharron, L.J. Montaner, D. Weissman, R.W. Doms, Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc. Natl. Acad. Sci. 96(9), 5215–5220 (1999)

    Article  Google Scholar 

  15. A.N. Chatterjee, P.K. Roy, Anti-viral drug treatment along with immune activator IL-2: a control-based mathematical approach for HIV infection. Int. J. Control 85(2), 220–237 (2012)

    Article  MathSciNet  Google Scholar 

  16. P.K. Roy, A.N. Chatterjee, T-cell proliferation in a mathematical model of CTL activity through HIV-1 infection. Proc. World Congr. Eng. I, 615–620 (2010)

    Google Scholar 

  17. S. Gordon, Pattern recognition receptors: doubling up for the innate immune response. Cell 111(7), 927–930 (2002)

    Article  Google Scholar 

  18. D. Kirschner, Dynamics of Co-infection withM. tuberculosisand HIV-1. Theor. Popul. Biol. 55(1), 94–109 (1999)

    Article  Google Scholar 

  19. C.K. Kwan, J.D. Ernst, HIV and tuberculosis: a deadly human syndemic. Clin. Microbiol. Rev. 24(2), 351–376 (2011)

    Article  Google Scholar 

  20. S. Pathak, T. Wentzel-Larsen, B. Åsjö, Effects of in vitro HIV-1 infection on mycobacterial growth in peripheral blood monocyte-derived macrophages. Infect. Immun. 78(9), 4022–4032 (2010)

    Article  Google Scholar 

  21. E.M. Shankar, R. Vignesh, R. EllegAard, M. Barathan, Y.K. Chong, M.K. Bador, D.V. Rukumani, N.S. Sabet, A. Kamarulzaman, V. Velu, M. Larsson, HIV Mycobacterium tuberculosis co-infection: a danger-couple model of disease pathogenesis. Pathog. Dis. 70(2), 110–118 (2014)

    Article  Google Scholar 

  22. D. Wolday, B. Tegbaru, A. Kassu, T. Messele, R. Coutinho, D. van Baarle, F. Miedema, Expression of chemokine receptors CCR5 and CXCR4 on CD4\(+\) T cells and plasma chemokine levels during treatment of active tuberculosis in HIV-1-coinfected patients. JAIDS J. Acquir. Immune Defic. Syndr. 39(3) 265–271 (2005)

    Article  Google Scholar 

  23. P.A. Selwyn, D. Hartel, V.A. Lewis, E.E. Schoenbaum, S.H. Vermund, R.S. Klein, A.T. Walker, G.H. Friedland, A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N. Engl. J. Med. 320(9), 545–550 (1989)

    Article  Google Scholar 

  24. C.R. Diedrich, J.L. Flynn, HIV-1/mycobacterium tuberculosis coinfection immunology: how does HIV-1 exacerbate tuberculosis?. Infect. Immun. 79(4), 1407–1417 (2011)

    Article  Google Scholar 

  25. R. Naresh, D. Sharma, A. Tripathi, Modelling the effect of tuberculosis on the spread of HIV infection in a population with density-dependent birth and death rate. Math. Comput. Model. 50(7–8), 1154–1166 (2009)

    Article  MathSciNet  Google Scholar 

  26. G. Bolarin, I.U. Omatola, A mathematical analysis of HIV/TB Co-infection model. Appl. Math. 6(4), 65–72(2016)

    Google Scholar 

  27. C.J. Silva, D.F. Torres, A TB-HIV/AIDS coinfection model and optimal control treatment (2015). arXiv:1501.03322

  28. A. Mallela, S. Lenhart, N.K. Vaidya, HIVTB co-infection treatment: modeling and optimal control theory perspectives. J. Comput. Appl. Math. 307 143–161 (2016)

    Article  MathSciNet  Google Scholar 

  29. T.D. Awoke, M.K. Semu, Optimal control strategy for TB-HIV/AIDS Co-infection model in the presence of behaviour modification. Processes 6(5), 48 (2018)

    Article  Google Scholar 

  30. L.I.W. Roeger, Z. Feng, C. Castillo-Chavez, Modeling TB and HIV co-infections. Math. Biosci. Eng. 6(4), 815–837 (2009)

    Article  MathSciNet  Google Scholar 

  31. G. Magombedze, W. Garira, E. Mwenje, In-vivo mathematical study of co-infection dynamics of HIV-1 and Mycobacterium tuberculosis. J. Biol. Syst. 16(03), 357–394 (2008)

    Article  Google Scholar 

  32. A. Hurwitz, On the conditions under which an equation has only roots with negative real parts. Sel. Pap. Math. Trends Control. Theory 65, 273–284 (1964)

    Google Scholar 

  33. G.J. Abiodun, N. Marcus, K.O. Okosun, P.J.Witbooi, A model for control of HIV/AIDS with parental care. Int. J. Biomath. 6(02), 1350006 (2013)

    Article  MathSciNet  Google Scholar 

  34. A.K. Roy, P.K. Roy, E. Grigorieva, Mathematical insights on psoriasis regulation: role of Th 1 and Th 2 cells. Math. Biosci. Eng. 15(3), 717–738 (2018)

    Google Scholar 

  35. T. Shiri, W. Garira, S.D. Musekwa, A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. MBE 2, 811–832 (2005)

    Article  MathSciNet  Google Scholar 

  36. S. Marino, D.E. Kirschner, The human immune response to Mycobacterium tuberculosis in lung and lymph node. J. Theor. Biol. 227(4), 463–486 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

Suman Dolai was the recipient of JUNIOR RESEARCH FELLOWSHIP (CSIR), File No-09/096(0904)/2017-EMR-I. Amit Kumar Roy acknowledges DST-PURSE PROJECT (Phase-II), Government of India, Department of Mathematics, Jadavpur University, Kolkata-700032, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priti Kumar Roy .

Editor information

Editors and Affiliations

17.6 Appendix

17.6 Appendix

\( A = -\sum a_{ii} \)

\( B= \sum a_{ii}a_{jj}-\sum a_{ij}a_{ji}\)

\( C= \sum a_{ij}a_{ji}a_{kk} -\sum a_{ii}a_{jj}a_{kk}-\sum a_{ij}a_{jk}a_{ki}\)

\(D=\sum a_{ii}a_{jj}a_{kk}a_{ll}+\sum a_{ij}a_{ji}a_{ki}a_{ll}{+}\sum a_{ij}a_{ji}a_{kl}a_{lk}{-}\sum a_{ij}a_{ji}a_{kk}a_{ll}{-}\sum a_{ij}a_{jk}a_{kl}a_{li}\)

\(E= \sum a_{ij}a_{ji}a_{kk}a_{ll}a_{mm}-\sum a_{ii}a_{jj}a_{kk}a_{ll}a_{mm}-\sum a_{ij}a_{jk}a_{kl}a_{li}a_{mm}-\sum a_{ij}a_{jk}a_{ki}a_{ll}a_{mm}-\sum a_{ij}a_{ji}a_{kl}a_{lk}a_{mm} +\sum a_{ij}a_{jk}a_{kl}a_{lm}a_{mi}\)

\( F= \sum a_{ii}a_{jj}a_{kk}a_{ll}a_{mm}a_{nn}{+}\sum a_{ij}a_{jk}a_{kl}a_{lm}a_{mi}a_{nn}{+}\sum a_{ij}a_{ji}a_{kl}a_{lk}a_{mm}a_{nn}{+}\sum a_{ij}a_{jk}a_{ki}a_{lm}a_{mn}a_{nl}\) \(-\sum a_{ij}a_{ji}a_{kk}a_{ll}a_{mm}a_{nn}-\sum a_{ij}a_{ji}a_{kl}a_{lm}a_{mk}a_{nn}\)

Here, A, B, C, D, E, and F follows a rule: \(i\ne j \ne k\ne l\ne m \ne n\). In \(a_{ij}\), if \(i=1\), then j can go to 6 or 5. Following same rule for k, l, m, n. Similarly, 2 can go 5 or 6. 3 can go 5. 4 can go 5 or 3. 5 can go 2 or 3 or 4 or 6 and 6 can go 1 or 2 or 5. In \(a_{ij}a_{ji}\), let \(i=1\) then j can go 5 or 6. But, \(a_{15}a_{51}\) does not exist because 5 cannot go to 1.

Let \( B= \sum a_{ii}a_{jj}-\sum a_{ij}a_{ji}\)

By above rule \(B=\sum _{i=1}^5a_{ii}\sum _{j=i+1}^6 a_{jj}-\{a_{16}a_{61}+a_{26}a_{62}+a_{25}a_{52}+a_{35}a_{53}+a_{45}a_{54}+a_{56}a_{65}\}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dolai, S., Roy, A.K., Roy, P.K. (2020). Mathematical Study on Human Cells Interaction Dynamics for HIV-TB Co-infection. In: Manchanda, P., Lozi, R., Siddiqi, A. (eds) Mathematical Modelling, Optimization, Analytic and Numerical Solutions. Industrial and Applied Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-15-0928-5_17

Download citation

Publish with us

Policies and ethics