Skip to main content

Uncertainties in Water Retention Curve of Bentonite

  • Conference paper
  • First Online:
Advances in Computer Methods and Geomechanics

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 56))

Abstract

Bentonites are increasingly used for various geoenvironmental applications (e.g. hydraulic barriers and waste containment) owing to its low hydraulic conductivity and high water retention capacity. Investigating the aforementioned problems necessitates the knowledge of the water retention curve (WRC) of bentonite, which maps the variation of the degree of saturation (S) with suction (\(\psi\)). It is now well established that there are various uncertainties associated with WRC. In this study, a database exclusively for the WRC of bentonite is presented. The uncertainties in the WRC parameters of the database are quantified using the copula approach and thereafter confidence intervals are created. Finally, as an application example, the confidence intervals are used to calculate uncertainty bounds in an unsaturated transient seepage problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abhijit D, Sreedeep S (2014) Evaluation of measurement methodologies used for establishing water retention characteristic curve of fly ash. J Test Eval 43(5):1066–1077

    Google Scholar 

  2. Alonso EE, Romero E, Hoffmann C (2011) Hydromechanical behaviour of compacted granular expansive mixtures: experimental and constitutive study. Géotechnique 61(4):329–344

    Article  Google Scholar 

  3. Baille W, Tripathy S, Schanz T (2014) Effective stress in clays of various mineralogy. Vadose Zone J 13(5)

    Google Scholar 

  4. Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24(5):755–769

    Article  Google Scholar 

  5. Chen B, Qian L, Ye W, Cui Y, Wang J (2006) Soil-water characteristic curves of Gaomiaozi bentonite. Yanshilixue Yu Gongcheng Xuebao/Chin J Rock Mech Eng 25(4):788–793

    Google Scholar 

  6. Chiu CF, Yan WM, Yuen KV (2012) Reliability analysis of soil–water characteristics curve and its application to slope stability analysis. Eng Geol 135:83–91

    Article  Google Scholar 

  7. Dai Z, Samper J, Wolfsberg A, Levitt D (2008) Identification of relative conductivity models for water flow and solute transport in unsaturated bentonite. Phys Chem Earth Parts A/B/C33:S177–S185

    Google Scholar 

  8. Gallipoli D (2012) A hysteretic soil-water retention model accounting for cyclic variations of suction and void ratio. Geotechnique 62(7):605

    Article  Google Scholar 

  9. Gatabin C, Talandier J, Collin F, Charlier R, Dieudonné AC (2016) Competing effects of volume change and water uptake on the water retention behaviour of a compacted MX-80 bentonite/sand mixture. Appl Clay Sci 121:57–62

    Article  Google Scholar 

  10. Gates WP, Bouazza A, Churchman GJ (2009) Bentonite clay keeps pollutants at bay. Elem 5(2):105–110

    Article  Google Scholar 

  11. Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insurance: Math Econ 44(2):199–213

    MathSciNet  MATH  Google Scholar 

  12. Genest C, Favre AC, Béliveau J, Jacques C (2007) Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resour Res 43(9)

    Google Scholar 

  13. Hökmark H (2004) Hydration of the bentonite buffer in a KBS-3 repository. Appl Clay Sci 26(1–4):219–233

    Article  Google Scholar 

  14. Kumar S, Yong WL (2002) Effect of bentonite on compacted clay landfill barriers. Soil Sediment Contam 11(1):71–89

    Article  Google Scholar 

  15. Lloret A, Romero E, Villar MV (2004) FEBEX II Project Final report on thermo-hydro-mechanical laboratory tests (No. ENRESA--10/04). CENTRO DE INVESTIGACIONES ENERGETICAS

    Google Scholar 

  16. Massey FJ Jr (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  Google Scholar 

  17. Mbonimpa M, Aubertin M, Maqsoud A, Bussière B (2006) Predictive model for the water retention curve of deformable clayey soils. J Geotech Geoenviron Eng 132(9):1121–1132

    Article  Google Scholar 

  18. Nelsen RB (2006) An introduction to copulas. Springer Science and Business Media

    Google Scholar 

  19. Nuth M, Laloui L (2008) Advances in modelling hysteretic water retention curve in deformable soils. Comput Geotech 35(6):835–844

    Article  Google Scholar 

  20. Phoon KK, Santoso A, Quek ST (2010) Probabilistic analysis of soil-water characteristic curves. J Geotech Geoenviron Eng 136(3):445–455

    Article  Google Scholar 

  21. Prakash A, Hazra B, Sreedeep S (2018) Uncertainty quantification in water retention characteristic curve of fly ash using copulas. J Test Eval 47(4)

    Article  Google Scholar 

  22. Prakash A, Hazra B, Sreedeep S (2018) Probabilistic analysis of unsaturated fly ash slope. J Hazard Toxic Radioact Waste 23(1):06018002

    Article  Google Scholar 

  23. Prakash A, Hazra B, Deka A, Sreedeep S (2017) Probabilistic analysis of water retention characteristic curve of fly ash. Int J Geomech 17(12):04017111

    Article  Google Scholar 

  24. Prakash A, Hazra B, Sreedeep S (Accepted) Probabilistic analysis of soil water characteristic curve of bentonite: a multivariate copula approach. Int J Geomech

    Google Scholar 

  25. Ravi K, Rao SM (2013) Influence of infiltration of sodium chloride solutions on WRC of compacted bentonite–sand specimens. Geotech Geol Eng 31(4):1291–1303

    Article  Google Scholar 

  26. Rizzi M, Seiphoori A, Ferrari A, Ceresetti D, Laloui L (2011) Analysis of the behaviour of the granular MX-80 bentonite in THM-processes. Lausanne Swiss Fed Inst Technol Orders 7:928

    Google Scholar 

  27. Seiphoori A, Ferrari A, Laloui L (2014) Water retention behaviour and microstructural evolution of MX-80 bentonite during wetting and drying cycles. Géotechnique 64(9):721–734

    Article  Google Scholar 

  28. Sillers WS, Fredlund DG (2001) Statistical assessment of soil-water characteristic curve models for geotechnical engineering. Can Geotech J 38(6):1297–1313

    Article  Google Scholar 

  29. Simunek J, Van Genuchten MT, Sejna M (2005) The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Univ Calif-Riverside Res Rep 3:1–240

    Google Scholar 

  30. Sklar M (1959) Fonctions de repartition an dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231

    MATH  Google Scholar 

  31. Tripathy S, Tadza MYM, Thomas HR (2014) Soil-water characteristic curves of clays. Can Geotech J 51(8):869–883

    Article  Google Scholar 

  32. Tripathy S, Thomas HR, Bag R (2015) Geoenvironmental application of bentonites in underground disposal of nuclear waste: characterization and laboratory tests. J Hazard Toxic Radioact Waste 21(1):D4015002

    Google Scholar 

  33. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci Soc Am J 44(5):892–898

    Google Scholar 

  34. Villar Galicia MV (2002) Thermo-hydro-mechanical characterisation of a bentonite from Cabo de Gata. A study applied to the use of bentonite as sealing material in high level radioactive waste repositories. Publicación técnica (Empresa Nacional de Residuos Radiactivos) 4:15–258

    Google Scholar 

  35. Villar MV, Lloret A (2004) Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Appl Clay Sci 26(1–4):337–350

    Article  Google Scholar 

  36. Villar MV (2005). MX-80 bentonite. Thermo-hydro-mechanical characterisation performed at CIEMAT in the context of the Prototype Project. Informes Técnicos CIEMAT 1053:39

    Google Scholar 

  37. Wheeler SJ, Sharma RS, Buisson MSR (2003) Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils. Géotechnique 53(1):41–54

    Article  Google Scholar 

  38. Zhou AN, Sheng D, Carter JP (2012) Modelling the effect of initial density on soil-water characteristic curves. Géotech 62(8):669

    Article  Google Scholar 

  39. Zhu Z, Sun DA, Zhou A, Qiu Z (2016) Calibration of two filter papers at different temperatures and its application to GMZ bentonite. Environ Earth Sci 75(6):509

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Prakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prakash, A., Hazra, B., Sreedeep, S. (2020). Uncertainties in Water Retention Curve of Bentonite. In: Prashant, A., Sachan, A., Desai, C. (eds) Advances in Computer Methods and Geomechanics . Lecture Notes in Civil Engineering, vol 56. Springer, Singapore. https://doi.org/10.1007/978-981-15-0890-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0890-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0889-9

  • Online ISBN: 978-981-15-0890-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics