Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSINTELL))

  • 699 Accesses

Abstract

Statistical methods calculate distinct texture characteristics and are appropriate if the size of the texture is similar to the size of the pixels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Punithavathy K, Ramya MM, Poobal S (2015) Analysis of statistical texture features for automatic lung cancer detection in PET/CT images. In: 2015 International conference on robotics, automation, control and embedded systems (RACE), IEEE, pp 1–5

    Google Scholar 

  2. Beura S, Majhi B, Dash R (2015) Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer. Neurocomputing 154:1–14

    Article  Google Scholar 

  3. Zhang X, Cui J, Wang W, Lin C (2017) A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm. Sensors 17(7):1474

    Article  Google Scholar 

  4. Xiao F, Kaiyuan L, Qi W, Yao Z, Xi Z (2018) Texture analysis based on gray level co-occurrence matrix and its application in fault detection. In: International geophysical conference. Society of Exploration Geophysicists and Chinese Petroleum Society, Beijing, China, 24–27 April 2018, pp 836–839

    Google Scholar 

  5. Pantic I, Dimitrijevic D, Nesic D, Petrovic D (2016) Gray level co-occurrence matrix algorithm as pattern recognition biosensor for oxidopamine-induced changes in lymphocyte chromatin architecture. J Theor Biol 406:124–128

    Article  Google Scholar 

  6. Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R (2010) Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 49(7):1012–1016

    Article  Google Scholar 

  7. Zou Z, Yang J, Megalooikonomou V, Jennane R, Cheng E, Ling H (2016) Trabecular bone texture classification using wavelet leaders. In: Medical imaging 2016: biomedical applications in molecular, structural, and functional imaging, vol 9788. International Society for Optics and Photonics, p 97880E

    Google Scholar 

  8. Korfiatis P, Kline TL, Coufalova L, Lachance DH, Parney IF, Carter RE, Erickson BJ (2016) MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 43(6Part1):2835–2844

    Article  Google Scholar 

  9. Daginawala N, Li B, Buch K, Yu H, Tischler B, Qureshi MM, Anderson S (2016) Using texture analyses of contrast enhanced CT to assess hepatic fibrosis. Eur J Radiol 85(3):511–517

    Article  Google Scholar 

  10. Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, Townsend D (2015) Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med 56(11):1667–1673

    Article  Google Scholar 

  11. Buvat I, Orlhac F, Soussan M (2015) Tumor texture analysis in PET: where do we stand? J Nucl Med 56(11):1642–1644

    Article  Google Scholar 

  12. Schieda N, Thornhill RE, Al-Subhi M, McInnes MD, Shabana WM, van der Pol CB, Flood TA (2015) Diagnosis of sarcomatoid renal cell carcinoma with CT: evaluation by qualitative imaging features and texture analysis. Am J Roentgenol 204(5):1013–1023

    Article  Google Scholar 

  13. Sogawa K, Nodera H, Takamatsu N, Mori A, Yamazaki H, Shimatani Y, Kaji R (2017) Neurogenic and myogenic diseases: quantitative texture analysis of muscle US data for differentiation. Radiology 283(2):492–498

    Article  Google Scholar 

  14. Yu H, Scalera J, Khalid M, Touret AS, Bloch N, Li B, Anderson SW (2017) Texture analysis as a radiomic marker for differentiating renal tumors. Abdom Radiol 42(10):2470–2478

    Article  Google Scholar 

  15. Assili S, Caldeira L, Lohmann P, Shahbazi A, Filss CP, Shah NJ, Langen KJ (2017) Evaluation of 18 F-FET-PET and perfusion MRI texture features in brain tumor grades. In: 2017 IEEE nuclear science symposium and medical imaging conference (NSS/MIC), IEEE, pp 1–2

    Google Scholar 

  16. Dahdouh S, Andescavage N, Yewale S, Yarish A, Lanham D, Bulas D, Limperopoulos C (2018) In vivo placental MRI shape and textural features predict fetal growth restriction and postnatal outcome. J Magn Reson Imaging 47(2):449–458

    Article  Google Scholar 

  17. Leijenaar RT, Nalbantov G, Carvalho S, Van Elmpt WJ, Troost EG, Boellaard R, Lambin P (2015) The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 5:11075

    Article  Google Scholar 

  18. Molina D, Pérez-Beteta J, Martínez-González A, Martino J, Velásquez C, Arana E, Pérez-García VM (2016) Influence of gray level and space discretization on brain tumor heterogeneity measures obtained from magnetic resonance images. Comput Biol Med 78:49–57

    Article  Google Scholar 

  19. Shafiq-ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Court LE (2017) Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys 44(3):1050–1062

    Article  Google Scholar 

  20. Kavitha JC, Suruliandi A (2016) Texture and color feature extraction for classification of melanoma using SVM. In: 2016 International conference on computing technologies and intelligent data engineering (ICCTIDE’16), IEEE, pp 1–6

    Google Scholar 

  21. Shen X, Shi Z, Chen H (2016) Splicing image forgery detection using textural features based on the grey level co-occurrence matrices. IET Image Proc 11(1):44–53

    Article  Google Scholar 

  22. Al-Janobi A (2001) Performance evaluation of cross-diagonal texture matrix method of texture analysis. Pattern Recogn 34(1):171–180

    Article  Google Scholar 

  23. Zhu D, Pan R, Gao W, Zhang J (2015) Yarn-dyed fabric defect detection based on autocorrelation function and GLCM. Autex Res J 15(3):226–232

    Article  Google Scholar 

  24. Liu G, Gousseau Y, Xia GS (2016) Texture synthesis through convolutional neural networks and spectrum constraints. In: 2016 23rd International conference on pattern recognition (ICPR), IEEE, pp 3234–3239

    Google Scholar 

  25. Franklin SE, Wulder MA, Lavigne MB (1996) Automated derivation of geographic window sizes for use in remote sensing digital image texture analysis. Comput Geosci 22(6):665–673

    Article  Google Scholar 

  26. Zemmal N, Azizi N, Dey N, Sellami M (2016) Adaptive semi supervised support vector machine semi supervised learning with features cooperation for breast cancer classification. J Med Imaging Health Inform 6(1):53–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotismita Chaki .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaki, J., Dey, N. (2020). Statistical Texture Features. In: Texture Feature Extraction Techniques for Image Recognition. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-15-0853-0_2

Download citation

Publish with us

Policies and ethics