Skip to main content

On the Determination of Graphic Integer Sequence from Graph Integrity

  • Conference paper
  • First Online:
  • 715 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 602))

Abstract

Role of networks in our daily lives is very important. Effectiveness of network decreases with the breaking down of some nodes or links. So, less vulnerable communication network is required for greater stability. Vulnerability is the measure of the resistance of the network after failure of communication links. In this article, a graph has been considered for modeling a network and integrity as the measure of vulnerability, and the aim is to construct a graphic integer sequence of a graph or network with maximum number of edges from a given vertex order or number of vertices and graph integrity in linear time. Experiments show some possible graphs with maximum number of edges which obeys the given vertex order and integrity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ye, Q.: On vulnerability of power and total graphs. WSEAS Trans. Math. 11, 1028–1038 (2012)

    Google Scholar 

  2. Bagga, K.S., Beineke, L.W., Goddard, W.D., Lipman, M.J., Pippert, R.E.: A survey of integrity. Discret. Appl. Math. 37, 13–28 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Moazzami, D.: Vulnerability in graphs—a comparative survey. J. Combin. Math. Combin Comput. 30, 23–32 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Barefoot, C.A., Entringer, R., Swart, H.: Vulnerability in graphs—a comparative survey. J. Combin. Math. Combin. Comput. 1(38), 13–22 (1987)

    MathSciNet  MATH  Google Scholar 

  5. Deo, N.: Graph Theory with Applications to Engineering and Computer Science. Courier Dover Publications (2017)

    Google Scholar 

  6. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a linear graph. I. J. Soc. Ind. Appl. Math. 10(3), 496–506

    Google Scholar 

  7. Sloane, N.J.A.: A Handbook of Integer Sequences. Academic Press (2014)

    Google Scholar 

  8. Sloane, N.J.: The on-line encyclopedia of integer sequences (2003)

    Google Scholar 

  9. Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, Part 1, vol. 4A (2011)

    Google Scholar 

  10. Bondy, J.A., Murty, U.S.R.: Graph theory with applications, vol. 290. Macmillan, London (1976)

    Google Scholar 

  11. Basuli, K.: Graphic integer sequence and its applications. Ph.D. Thesis, University of Calcutta (2017)

    Google Scholar 

  12. Chartrand, G., Zhang, P.: A First Course in Graph Theory. Courier Corporation (2013)

    Google Scholar 

  13. Basuli, K.: Role of degree sequence in determination of maximal clique of a graph. J. Glob. Res. Comput. Sci. 1(2) (2010)

    Google Scholar 

  14. Cozzens, M.B., Moazzami, D., Stueckle, S.: The tenacity of the Harary graphs. J. Combin. Math. Combin. Comput. 16, 33–56 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Doty, L.L.: Extremal connectivity and vulnerability in graphs. Networks 19(1), 73–78 (1989)

    Google Scholar 

  16. Jun, W.U., Barahona, M., Yue-Jin, T., Hong-Zhong, D.: Natural connectivity of complex networks. Chin. Phys. Lett. 27(7), 078902 (2010)

    Article  ADS  Google Scholar 

  17. Fujita, S., Furuya, M.: Safe number and integrity of graphs. Discr. Appl. Math. (2018)

    Google Scholar 

  18. Li, Y., Shi, Y., Gu, X.: Spectrum bounds for the scattering number, integrity, tenacity of regular graphs. Future Gen. Comput. Syst. 83, 450–453 (2018)

    Article  Google Scholar 

  19. Saravanan, M., Sujatha, R., Sundareswaran, R., Sahoo, S., Pal, M.: Concept of integrity and its value of fuzzy graphs. J. Intell. Fuzzy Syst. (Preprint) 1–11 (2018)

    Google Scholar 

  20. Drange, P.G., Dregi, M., van’t Hof, P.: On the computational complexity of vertex integrity and component order connectivity. Algorithmica 76(4), 1181–1202 (2016)

    Google Scholar 

  21. Mahde, S.S., Mathad, V., Sahal, A.M.: Hub-integrity of graphs. Bull. Int. Math. Virtual Inst. 5, 57–64 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Vaidya, S.K., Kothari, N.J.: Some new results on domination integrity of graphs. Open J. Discret. Math. 2(03), 96 (2012)

    Article  Google Scholar 

  23. Mahde, S.S., Mathad, V.: Edge hub-integrity of graphs

    Google Scholar 

  24. Moazzami, D.: Towards a measure of vulnerability, tenacity of a Graph. J. Algorithms Comput. 48(1), 149–153 (2016)

    Google Scholar 

  25. Aslan, E.: A measure of graphs vulnerability: edge scattering number. Bull. Soc. Math. Banja Luka 4, 53–60 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Bacak-Turan, G., Şenoğlu, M.Ü., Altundağ, F.N.: Neighbor rupture degree of some middle graphs. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(1), 75–80 (2018)

    Article  Google Scholar 

  27. Aytac, A.: The common-neighbourhood of a graph. Boletim da Sociedade Paranaense de Matemática 35(1), 23–32 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bacak-Turan, G., Demirtekin, E.: Neighbor rupture degree of gear graphs. CBU J. Sci. 12(2), 319–323 (2017)

    Google Scholar 

  29. Aslan, E.: Weak-rupture degree of graphs. Int. J. Found. Comput. Sci. 27(06), 725–738 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Aslan, E., Bacak-Turan, G.: Mean rupture degree of graphs. Univ. Politeh. Buch. Sci. Bull. Ser. Appl. Math. Phys. 78(1), 233–242 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Clark, L.H., Entringer, R.C., Fellows, M.R.: Computational complexity of integrity. J. Combin. Math. Combin. Comput 2, 179–191 (1987)

    MathSciNet  MATH  Google Scholar 

  32. Li, F., Li, X.: Computing the rupture degrees of graphs. In: Proceedings of 7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004, pp. 368–373. IEEE (2004)

    Google Scholar 

  33. Zhang, S., Li, X., Han, X.: Computing the scattering number of graphs. Int. J. Comput. Math. 79(2), 179–187 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. https://cran.r-project.org/manuals.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajit Sensarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sensarma, D., Sarma, S.S. (2020). On the Determination of Graphic Integer Sequence from Graph Integrity. In: Kundu, S., Acharya, U.S., De, C.K., Mukherjee, S. (eds) Proceedings of the 2nd International Conference on Communication, Devices and Computing. ICCDC 2019. Lecture Notes in Electrical Engineering, vol 602. Springer, Singapore. https://doi.org/10.1007/978-981-15-0829-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0829-5_44

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0828-8

  • Online ISBN: 978-981-15-0829-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics