Skip to main content

Symmetric Lattice-Based PAKE from Approximate Smooth Projective Hash Function and Reconciliation Mechanism

  • Conference paper
  • First Online:
Frontiers in Cyber Security (FCS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1105))

Included in the following conference series:

Abstract

Password-based authenticated key exchange (PAKE) protocols allow two users who share only a short, low-entropy password to establish a consistent cryptographically strong session key. In 2009, Katz and Vaikuntanathan gave the first lattice-base PAKE from approximate smooth projective hash function (ASPHF) which is a variant of smooth projective hash function (SHPF). In 2017, Zhang and Yu introduced a two-round PAKE based on splittable PKEs. An error-correcting code (ECC) was used in these protocols to deal with the errors intrinsically in learning with errors (LWE) assumption, and the protocol is asymmetric as the session key is decided be just one user. In this paper, an error correcting technique called reconciliation mechanism, which was first introduced to construct a key exchange protocol from lattice, is adopted to construct more efficient lattice-based PAKEs with reduced computation complexity and communication complexity. Moreover, the new PAKEs are symmetric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The additions in this paper are performed in \(\mathbb Z_q\).

References

  1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistinguishable under plaintext-checkable attacks. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 332–352. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_15

    Chapter  MATH  Google Scholar 

  2. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for conditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 671–689. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_39

    Chapter  Google Scholar 

  3. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  4. Alkim, E., Ducas, L., Poppelmann, T., Schwabe, P.: Post-quantum key exchange-a new hope. In: USENIX Security Symposium, pp. 327–343 (2016)

    Google Scholar 

  5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_11

    Chapter  Google Scholar 

  6. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  7. Bellovin, S.M., Merritt, M.: Encrypted Key Exchange: Password-Based Protocols Secure Against Dictionary Attacks. IEEE Computer Society (1992)

    Google Scholar 

  8. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_25

    Chapter  Google Scholar 

  9. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million passwords. In: Security & Privacy. IEEE (2012)

    Google Scholar 

  10. Berlekamp, E.R., McEliece, R.J., Van Tilborg, H.C.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

    Article  MathSciNet  Google Scholar 

  11. Bos, J., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. In: IEEE Symposium on Security and Privacy, pp. 553–570 (2015)

    Google Scholar 

  12. Boyko, V., MacKenzie, P., Patel, S.: Provably Secure password-authenticated key exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_12

    Chapter  Google Scholar 

  13. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

    Article  MathSciNet  Google Scholar 

  14. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  15. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_24

    Chapter  Google Scholar 

  16. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2012)

    Article  MathSciNet  Google Scholar 

  17. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_4

    Chapter  Google Scholar 

  18. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  19. Ding, J., Xie, X., Lin, X.: A Simple Provably Secure Key Exchange Scheme Based on the Learning with Errors Problem, http://eprint.iacr.org/2012/688 (2012)

  20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of The Fortieth Annual ACM Symposium on Theory of Computing (STOC 2008), pp. 197–206. ACM, New York (2008)

    Google Scholar 

  21. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_33

    Chapter  Google Scholar 

  22. Groce, A., Katz, J.: A new framework for efficient password-based authenticated key exchange. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, 4–8 October 2010

    Google Scholar 

  23. Jin, Z., Zhao, Y.: Optimal Key Consensus in Presence of Noise. http://eprint.iacr.org/2017/1058 (2017)

  24. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_29

    Chapter  Google Scholar 

  25. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_37

    Chapter  Google Scholar 

  26. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key exchange. J. Cryptol. 26(4), 714–743 (2013)

    Article  MathSciNet  Google Scholar 

  27. Li, Z., Wang, D.: Two-round PAKE protocol over lattices without NIZK. In: Guo, F., Huang, X., Yung, M. (eds.) Inscrypt 2018. LNCS, vol. 11449, pp. 138–159. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14234-6_8

    Chapter  Google Scholar 

  28. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21

    Chapter  Google Scholar 

  29. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 1–35 (2013)

    Article  MathSciNet  Google Scholar 

  30. MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key exchange based on RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 599–613. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_46

    Chapter  Google Scholar 

  31. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: Annual Symposium on Foundations Of Computer Science. IEEE Computer Society (2004)

    Google Scholar 

  32. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_12

    Chapter  MATH  Google Scholar 

  33. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 506–519 (2009)

    Article  MathSciNet  Google Scholar 

  34. Zhang, J., Yu, Y.: Two-round PAKE from approximate SPH and instantiations from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 37–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_2

    Chapter  Google Scholar 

  35. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_24

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zilong Wang or Honggang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Hu, H., Zheng, M., Nan, J. (2019). Symmetric Lattice-Based PAKE from Approximate Smooth Projective Hash Function and Reconciliation Mechanism. In: Shen, B., Wang, B., Han, J., Yu, Y. (eds) Frontiers in Cyber Security. FCS 2019. Communications in Computer and Information Science, vol 1105. Springer, Singapore. https://doi.org/10.1007/978-981-15-0818-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0818-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0817-2

  • Online ISBN: 978-981-15-0818-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics